Изобретение относится к нефтепереработке и нефтехимии, в частности, к способам получения носителей на основе оксида алюминия, которые могут быть использованы для катализаторов процессов нефтепереработки.
Известен способ приготовления катализатора гидроочистки бензина каталитического крекинга (Патент РФ 2575638, опубл. 20.02.2016), включающего в свой состав кобальт, молибден, алюминий, при этом катализатор готовят пропиткой носителя, содержащего, мас. %: аморфный алюмосиликат от 50 до 90%, Al2O3 - остальное, и имеющего удельную поверхность от 150 до 350 м2/г, объем пор от 0,5 до 1,1 см3/г, средний диаметр пор от 5 до 15 нм, представляющего собой частицы с сечением в виде трилистника с диаметром от 1,3 до 1,7 мм и длиной до 20 мм, имеющие прочность от 1,0 до 1,5 кг/мм, водным раствором, причем носитель для катализатора получают формовкой пасты, полученной смешением порошка AlOOH со структурой бемита, порошка аморфного алюмосиликата, воды и азотной или уксусной кислоты, через фильеру в форме трилистника при давлении до 10 МПа, с последующей сушкой и прокалкой при температуре от 500 до 600°C.
Недостатком данного способа является структурная неустойчивость системы носитель-аморфный алюмосиликат, что может приводить к тиксотропии полученной пасты при экструзионном формовании.
Известен способ получения носителя для катализатора гидроочистки нефтяных фракций на основе активного оксида алюминия (Патент РФ 2623432, опубл. 26.06.2017), включающий смешивание гидроксида алюминия "сырая лепешка" с порошком гидроксида алюминия, обработку смеси раствором органической кислоты, формовку, сушку и прокаливание, причем сформованный носитель сушат при 120°С в течение 4 часов, в дальнейшем температуру поднимают до 550°С по 50°С в час в течение 9 часов, после чего прокаливают при 550°С в течение 8 часов.
Недостатком известного технического решения является его низкая энергоэффективность поскольку в описанном способе проводят длительный режим сушки (4 часа) и многостадийный этап прокаливания гранул носителя (17 часов).
Известен способ приготовления носителя для катализатора гидроочистки (Патент РФ 2633967, опубл. 20.10.2017), содержащего оксид алюминия и соединение бора, причем продукт термической активации гидраргиллита - Al(ОН)3 - ПТАГ измельчают до частиц со средним размером от 20 до 50 мкм, затем гидратируют, промывают, подвергают гидротермальной обработке и распылительной сушке, проводят пептизацию при перемешивании водным раствором аммиака с аммиачным модулем не менее 0,075; экструдируют и после термообработки получают носитель, содержащий, мас.%: борат алюминия Al3BO6 со структурой норбергита от 5,0 до 25,0; натрий - не более 0,03; γ-Al2O3 - остальное.
Недостатком известного технического решения является его низкая энергоэффективность, поскольку в описанном способе проводят гидротермальную обработку и распылительную сушку.
Известен способ приготовления носителя для катализатора гидроочистки (Патент РФ 2726374, опубл. 13.07.2020), характеризующийся тем, что продукт термической активации гидраргиллита – Al(ОН)3 - ПТАГ – измельчают до частиц со средним размером от 20 до 50 мкм, затем гидратируют, промывают, подвергают гидротермальной обработке в присутствии борной кислоты, распылительной сушке и смешивают полученный порошок с раствором кремнезоля, проводят пептизацию при перемешивании водным раствором аммиака, экструдируют и после термообработки получают носитель, включающий в свой состав, мас.%: диоксид кремния SiO2, представляющий собой аморфную фазу и имеющий размер частиц от 3 до 20 нм – от 2,0 до 20,0, борат алюминия Al3BO6 со структурой норбергита – от 5,0 до 25,0, γ-Al2O3 – остальное, носитель имеет удельную поверхность от 240 до 270 м2/г, объем пор от 0,5 до 0,8 см3/г, средний диаметр пор от 7 до 12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности от 1,0 до 1,6 мм и длиной до 20 мм.
Недостатком известного технического решения является использование в способе бората алюминия, что может приводить к уменьшению суммарного объема пор и образованию монодисперсной структуры носителя.
Кроме того, известен способ получения носителя катализатора гидроочистки (Патент Японии №6013259 от 25.10.2016), принятый за прототип, включающий приготовление носителя путем смешения раствора NaAlO2 и раствора солей алюминия, а также соли металла используемого в качестве добавки оксида, пластификацию шихты при смешении с пептизатором с получением твердообразной пластичной пасты, экструзию пасты в гранулы, сушку гранул, термообработку гранул, при этом регулирование кислотных центров достигается введением элементов из числа 1- ой группы – Si, Ti, Zr, в количестве от 1 до 10% мас. и 2-ой – из числа В и Р в количестве от 1 до 5 % мас.
Недостатком известного технического решения является нестабильность конечных свойств продукта из-за этапа осаждения в технологическом процессе производства носителя.
Техническим результатом является получение носителей с различными рецептурами по химическому составу с развитой пористой структурой и кислотно-основными центрами, высокой удельной поверхностью, суммарным объемом пор и высокими прочностными характеристиками.
Технический результат достигается тем, что предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты, которая включает гидроксиды алюминия псевдобемитного или байеритно-бемитного или бемитного фазовых составов, после чего проводят их сухое смешение с добавкой, которая влияет на структуру носителя, представляющей собой алюмосиликат, оксид кремния, оксид циркония, карбамид, метилцеллюлозу, карбонат аммония или гидрокарбонат аммония, с размером зерна от 5 до 50 мкм, или добавкой, которая влияет на структуру носителя, представляющей собой графит или γ-Al2O3 , с размером зерна от 5 до 315 мкм в количестве от 5 до 65 %, затем добавляют жидкофазный пептизатор, проводят экструзию полученной пасты через фильеру сложного профиля с диаметром от 1,0 до 5,0 мм, затем проводят сушку гранул в течение не менее 24 часов при температуре от 15 до 30°C, а последующую термообработку гранул проводят при температуре от 550 до 1150°C в течение от 3 до 5 часов с получением носителя в виде гранул.
В качестве жидкофазного пептизатора используют воду или водные растворы азотной или серной или фосфорной или борной или лимонной кислот заданных концентраций для процесса пластификации шихты с кислотными эквивалентами от 0,01 до 0,300 г кислоты / г Al2O3.
В качестве добавки используют оксиды кремния или оксид циркония или алюмосиликат или карбамид, метилцеллюлоза или карбонат или гидрокарбонат аммония или графит или γ-Al2O3.
Способ осуществляется следующим образом. На первом этапе предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты в шаровой мельнице, после чего порошковые сырьевые компоненты подают в смеситель и проводят их сухое смешение, затем проводят пластификацию шихты, путем добавления и смешения жидкофазного пептизатора в шихту с получением твердообразной пластичной пасты. В качестве исходной шихты используют гидроксиды алюминия псевдобемитного или байеритно-бемитного или бемитного фазовых составов, причем в шихту на этапе сухого смешения вводят добавку, влияющую на структуру носителя, представляющей собой алюмосиликат, оксид кремния, оксид циркония, карбамид, метилцеллюлозу, карбонат аммония или гидрокарбонат аммония, с размером зерна 5-50 мкм, или добавку, которая влияет на структуру носителя, представляющей собой графит или γ-Al2O3 , с размером зерна от 5 до 315 мкм в количестве от 5 до 65 %. Полученную пластичную пасту загружают в экструдер и проводят экструзию пасты через фильеру сложного профиля с диаметром от 1,0 до 5,0 мм. Полученные гранулы подвергают сушке в течение не менее 24 часов при температуре от 15 до 30 °C, например, на воздухе в производственном помещении. Проводят термообработку гранул в печи, например, в муфельной печи. Термообработку гранул проводят при температуре от 550 до 1150 оС в течение от 3 до 5 часов, а после термообработки с получением носителя в виде гранул с формой цилиндра, или с формой трилистника. В качестве жидкофазных пептизаторов используют воду или водные растворы азотной или серной или фосфорной или борной или лимонной кислот заданных концентраций для процесса пластификации шихты с кислотными эквивалентами от 0,01 до 0,300 г кислоты / г Al2O3. В качестве добавок, влияющих на структуру носителя, используют оксиды кремния или оксид циркония или алюмосиликат или карбамид, метилцеллюлоза или карбонат или гидрокарбонат аммония или графит или γ-Al2O3.
Для получения носителей по данному способу используют гидроксидалюминиевое (ГОА) сырье порошковой консистенции псевдобемитного или байеритно-бемитного или бемитного фазовых составов разной степени окристаллизованности, которая определяется по температуре максимальной скорости дегидратации (в пределах от 350 до 550°C) бемитной или псевдобемитной фазы с ее переходом в γ-Al2O3. Псевдобемит в качестве связующего обладает наилучшими свойствами, поскольку содержит до 30% внутри структурно связанной воды, освобождающейся после термообработки. Из-за более высокой температуры перехода в γ фазу бемит обладает более низкими текстурными характеристиками, по сравнению с псевдобемитом. Ограничено использование байеритно-бемитной смеси из-за фазовой разнородности, что в свою очередь может приводить к тикстороприи или самопроизвольному разрушению гранул при термообработке.
Добавки, влияющие на структуру носителя, которые вводят в шихту, регулируют пористую структуру и повышают суммарный объем пор и удельную поверхность. В качестве добавок, влияющих на структуру носителя, используют оксиды кремния, повышающие концентрацию кислотных центров на поверхности носителя, или оксид циркония, повышающий прочностные свойства в составе носителя, или алюмосиликат, повышающий концентрацию кислотно-основных центров на поверхности носителя, или карбамид, метилцеллюлоза или карбонат или гидрокарбонат аммония или графит, которые при термообработке выгорают и оставляют в объеме носителя пустоты, повышающие удельную поверхность и суммарный объем пор, или γ-Al2O3, который при термообработке смещает распределение пор из монодисперсной в бидисперсную область. Размер частиц добавки, которая влияет на структуру носителя, представляющей собой алюмосиликат, оксид кремния, оксид циркония, карбамид, метилцеллюлозу, карбонат аммония или гидрокарбонат аммония, задан от 5 до 50 мкм в количестве от 5 до 65% мас. Использование размера менее 5 мкм нецелесообразно, поскольку существенно повысятся энергозатраты на измельчение добавок, влияющих на структуру носителя. При размере более 50 мкм процесс формования невозможен, поскольку будет забиваться фильеры в формующем аппарате. Размер частиц добавки, которая влияет на структуру носителя, представляющей собой графит или γ-Al2O3 задан от 5 до 315 мкм в количестве от 5 до 65 %. Использование размера менее 5 мкм нецелесообразно, поскольку существенно повысятся энергозатраты на измельчение добавок, влияющих на структуру носителя. При размере более 315 мкм процесс формования невозможен, поскольку будет забиваться фильеры в формующем аппарате. При введении добавок, влияющих на структуру носителя, в количестве менее 5 % масс. не будет наблюдаться изменение свойств носителя. При введении добавок выше 65 % масс. будет затруднен процесс формования и может наблюдаться тиксотропия на этапе пластификации исходной шихты.
В качестве жидкофазных пептизаторов используют воду или водные растворы азотной или серной или фосфорной или борной кислот с кислотными эквивалентами от 0,01 до 0,300 г кислоты / г Al2O3. При использовании кислотного эквивалента ниже 0,01 г кислоты / г Al2O3 не наблюдается видимого эффекта на конечные свойства носителя. При использовании кислотного эквивалента выше 0,300 г кислоты / г Al2O3 затрудняется процесс формования. Вода в качестве пептизатора не обладает какими-либо свойствами и служит в качестве образца сравнения. Водные растворы азотной или серной или фосфорной или борной или лимонной кислот обладают тройным влиянием на формирование свойств носителя, а именно: улучшают пластификацию шихты при пастообразовании, повышают кислотные свойства за счет остающихся в структуре Al2O3 элементов и формируют пористую структуру с собственным распределением пор по размерам, присущим только данному пептизатору. Лимонная кислота выступает в роли выгорающей добавки, после термообработки формируется дополнительный объем пор.
Проводят экструзию полученной пасты через фильеру сложного профиля с диаметром от 1,0 до 5,0 мм, что позволяет увеличить геометрическую площадь поверхности контакта жидких углеводородов с поверхностью катализатора, гранулы носителя формовались в виде трилистника с диаметром от 1,6 до 5.0 мм. Экструдаты сложной формы снижают насыпную плотность катализатора, загруженного послойно. Формовка гранул менее 1,0 мм энергозатратна, поскольку повышается давление в формующем устройстве. При формовке гранул более 5,0 мм повышается насыпная плотность гранул и снижается их прочность.
Сушку гранул проводят в течение не менее 24 часов при температуре от 15 до 30 оС, что позволяет удалить физически связанную воду из гранул после формования. При сушке менее 24 часов образцы самопроизвольно разрушаются при дальнейшей термообработке.
Последующую термообработку гранул проводят при температуре от 550 до 1150°C в течение от 3 до 5 часов с получением носителя. При конечной температуре термообработки ниже 550°C, в носителе остается структурно связанная вода и не образуется требуемая фаза γ-Al2O3. При конечной температуре термообработке выше 1150°C образуется фаза α-Al2O3, которая обладает низкой поверхностью. Повышение конечной температуры прокаливания (выше 550°C) позволяет получать тетрагональную структуру γ-Al2O3 при 700°C за счет срастания кристаллитов γ-Al2O3 с кубической решеткой, и вплоть до δ-Al2O3, получаемой при 900°C. Прокаливание при 1150°C с использованием добавок, влияющих на структуру носителя, позволяет повысить прочностные характеристики систем, при этом носители обладают высокой поверхностью и имеют поры различных размеров.
Состав поясняется следующими примерами.
Пример 1. Предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты в шаровой мельнице, после чего порошок псевдобемита в количестве 9,82 кг с содержанием 6 кг Al2O3 помещают в Z-образный смеситель (Типа Вернер) объемом 40 л, добавляют 4,61 кг водного раствора кислоты, содержащего от 0,21 до 0,30 кг HNO3, или 0,15 до 0,45 кг H3PO4 или от 0,558 до 0,798 кг H3BO3 или от 0,12 до 1,2 кг С6Н8О7 и перемешивают в течение 0,5 часа с получением пластичной массы с влажностью 39,5 % мас. Готовую массу формуют на экструдере с получением гранул в форме трилистника с диаметром 1,6 мм и длиной 5-10 мм. Полученные гранулы подвергают сушке в течение не менее 24 часов при температуре от 15 до 30°C до постоянства равновесной влажности. Проводят термообработку гранул при температуре 550°C в течение 5 часов в печи, с получением носителя. Результаты представлены в Таблице 1.
Таблица 1- регулирование структурных свойств и кислотное промотирование носителей пептизаторами
ГОА
Конечная температура термообработки составляла 550°C.
Мех. прочность определялась раздавливанием 20 цилиндрических гранул образца по образующей диаметром 5,5±0,5 мм
Пример 2. Предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты в шаровой мельнице, после чего порошок псевдобемита в количестве 9,82 кг вс содержанием 6 кг Al2O3 помещают в Z-образный смеситель (Типа Вернер) объемом 40 л вместе с порошковой добавкой в виде оксида кремния в количестве от 4 до 60 % мас. или алюмосиликат в количестве от 50 до 65 % мас. или оксид циркония в количестве 20 % мас. и проводят стадию сухого смешения в течение не менее 0,5 ч до получения гомогенной шихты. Добавляют 4,61 кг водного раствора кислоты, содержащего от 0,21 до 0,30 кг HNO3, или 0,15 до 0,45 кг H3PO4 и перемешивают в течение 0,5 часа с получением пластичной массы с влажностью 39,5 % мас. Далее аналогично Примеру 1. Результаты представлены в Таблице 2.
Таблица 2 - регулирование структурных свойств и кислотно-основных свойств поверхности носителей при введении дисперсных наполнителей
см3/г
0,05
0,035
0,035
0,035
А-300 SiO2
0,035
А-300 SiO2
0,035
0,05
1,3
0,035
0,045
0,05
Конечная температура термообработки составляла 550°C
Размер зерна добавок составлял 5-50 мкм. Кислотно-основные свойства поверхности носителей определены методом Гаммета.
Пример 3. Предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты в шаровой мельнице, после чего порошок псевдобемита в количестве 9,82 кг вс содержанием 6 кг Al2O3 помещают в Z-образный смеситель (Типа Вернер) объемом 40 л вместе с порошковой добавкой в виде карбамида в количестве от 6 до 12 % мас. или метилцеллюлозы в количестве от 3,5 % мас. или карбонат аммония в количестве от 9 до 10 % мас. или гидрокарбонат аммония в количестве 5 % мас. и проводят стадию сухого смешения в течение не менее 0,5 ч до получения гомогенной шихты. Добавляют 4,61 кг водного раствора кислоты, содержащего от 0,21 до 0,30 кг HNO3, и перемешивают в течение 0,5 часа с получением пластичной массы с влажностью 39,5 % мас. Готовую массу формуют на экструдере с получением гранул в форме трилистника с диаметром 1,6 мм и длиной 5-10 мм. Полученные гранулы подвергают сушке в течение не менее 24 часов при температуре от 15 до 30°C до постоянства равновесной влажности. Проводят термообработку гранул при температуре 550°C в течение 5 часов в печи или при температуре 750°C в течение 3 часов, с получением носителя. Результаты представлены в Таблице 3.
Таблица 3 - получение носителей с повышенной пористостью и увеличенными размерами пор; наполнители – порообразующие с Т выгорания до 400-500оС
носителя, °C
см3/г
прочн., кг/см2
Пб
Размер зерна добавок составлял 5-50 мкм.
Пример 4. Предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты в шаровой мельнице, после чего порошок псевдобемита в количестве 9,82 кг с содержанием 6 кг Al2O3 помещают в Z-образный смеситель (Типа Вернер) объемом 40 л вместе с порошковой добавкой в виде графита в количестве от 20 до 30 % мас. с размером зерна от 5 до 315 мкм, и проводят стадию сухого смешения в течение не менее 0,5 ч до получения гомогенной шихты. Далее аналогично Примеру 3. Термообработку гранул проводят при температуре от 750°C до 900°C в течение 3 часов. Результаты представлены в Таблице 4.
Таблица 4 - получение носителей с увеличенным размерами пор, общей пористостью и повышенной термостойкостью; наполнитель – графит.
носителя, °C
В качестве наполнителя использовался графит
Пример 5. Предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты в шаровой мельнице, после чего порошок псевдобемита в количестве 9,82 кг с содержанием 6 кг Al2O3 помещают в Z-образный смеситель (Типа Вернер) объемом 40 л вместе с порошковой добавкой в виде γ-Al2O3 в количестве 30 % мас. с размером зерна от 5 до 315 мкм, и проводят стадию сухого смешения в течение не менее 0,5 ч до получения гомогенной шихты. Далее аналогично Примеру 3. Термообработку гранул проводят при температуре от 750°C до 1150°C в течение 3 часов. Результаты представлены в Таблице 5.
Таблица 5 - получение носителей с повышенными пористостью и термостойкостью, наполнитель – безводный пористый оксид алюминия
носителя, °C
-
160
-
200
-
200
В качестве наполнителя использовали отходный материал (отсевы) от производства носителя марки АОА.
Из Примера 1 видно, что азотной кислоты в качестве пептизатора при увеличении концентрации повышает прочностные свойства носителей, одновременно снижая суммарный объем пор. Для фосфорной кислоты оптимальное содержание составляет 0,05 г кислоты на г Al2O3. При использовании борной кислоты не достигается технический результат ввиду того, что образцы обладают низкими прочностными свойствами.
Предпочтительным является использование нитратно-аммиачного гидроксида алюминия псевдобемитной фазы с ППП ≥ 22-23 % мас. без учета физически связанной воды), обладающей наивысшей связующей способностью и наивысшими структурно-прочностными свойствами в составе Al2O3-носителей. При использовании сырья байеритно-бемитного и бемитного составов по показателям прочности и суммарного объема пар не достигается технических результат.
Из Примера 2 видно, что добавки на основе кремния повышают концентрацию кислотных центров поверхности носителя, в сравнении с образцами без добавок (1-3). Аналогичные результаты наблюдаются при использовании в качестве добавки цеолит (образцы 9, 11 и 12). Добавка оксида циркония повышает механическую прочность, при этом снижая суммарный объем пор до 0,47 (образец 10).
Из Примера 3 видно, что порообазующие добавки, в сравнении с образцом 1, повышают суммарный объем пор и удельную поверхность. В образце 4 меняется распределение пор в сторону их увеличения при использовании добавки метилцеллюлозы.
Из Примера 4 видно, что при увеличении температуры термообработки для образцов из псевдобемита наблюдается увеличение суммарного объема пор и снижение кажущейся плотности. Распределение пор по размерам, в сравнении с образцом 1, смещается в область крупных пор. Оптимальный размер зерна для добавки составляет от 5 до 160 мкм.
Из Примера 5 видно, что добавка в виде γ-Al2O3 смещает распределение пор в область мезопор (образцы 1 и 5). При повышении конечной температуры термообработки и размера зерна добавки снижается кажущаяся плотность носителя и удельная поверхность. Оптимальный размер зерна добавки составляет 5-160 мкм.
Согласно данным Таблиц 1-5, предлагаемый способ получения носителей для катализаторов процессов нефтепереработки с использованием различных пептизаторов и добавок в исходную шихту позволяет получать носители для катализаторов с различными рецептурами:
- по химическому составу (содержание С, Р, В, Si, Zr);
- по наличию кислотных центров (развитые Льюисовские и Бренстедовские центры);
- по текстурным свойствам (развитая пористая структура, высокие значения удельной поверхности, суммарного объема пор и механической прочности, низкая кажущаяся плотность).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ГИДРОКСИДА АЛЮМИНИЯ (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ | 2010 |
|
RU2432318C1 |
Носитель для катализатора дегидрирования парафиновых углеводородов в стационарном слое на основе активного оксида алюминия | 2019 |
|
RU2724048C1 |
СПОСОБ ПОЛУЧЕНИЯ КАРКАСНЫХ СТРУКТУР НА ОСНОВЕ SiO2-Al2O3 | 2021 |
|
RU2761822C1 |
Носитель на основе оксида алюминия для катализаторов переработки углеводородного сырья и способ его приготовления | 2018 |
|
RU2685263C1 |
КАТАЛИЗАТОР ДЛЯ РИФОРМИНГА БЕНЗИНОВЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2011 |
|
RU2471854C1 |
Способ приготовления носителя для катализатора гидроочистки | 2020 |
|
RU2738076C1 |
Носитель для катализатора гидроочистки | 2020 |
|
RU2738080C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА | 2015 |
|
RU2575638C1 |
Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя | 2019 |
|
RU2704122C1 |
СПОСОБ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА | 2015 |
|
RU2575639C1 |
Настоящее изобретения относится к способу получения носителей на основе оксида алюминия для катализаторов процессов нефтепереработки. Способ включает пластификацию шихты при смешении с жидкофазным пептизатором с получением твердообразной пластичной пасты, экструзию пасты в гранулы, сушку гранул, термообработку гранул. При этом предварительно проводится диспергирование исходных порошковых сырьевых компонентов шихты, которая включает гидроксиды алюминия псевдобемитного, или байеритно-бемитного, или бемитного фазовых составов, после чего проводится их сухое смешение с добавкой, которая влияет на структуру носителя. Добавка представляет собой алюмосиликат, оксид кремния, оксид циркония, карбамид, метилцеллюлозу, карбонат аммония или гидрокарбонат аммония с размером зерна от 5 до 50 мкм или добавку, которая влияет на структуру носителя, представляющую собой графит или γ-Al2O3 , с размером зерна от 5 до 315 мкм в количестве от 5 до 65 % мас., затем добавляется жидкофазный пептизатор, проводится экструзия полученной пасты через фильеру сложного профиля с диаметром от 1,0 до 5,0 мм, затем проводится сушка гранул в течение не менее 24 часов при температуре от 15 до 30°С, а последующая термообработка гранул проводится при температуре от 550 до 1150°С в течение от 3 до 5 часов с получением носителя в виде гранул. Предлагаемый способ позволяет получить носитель с развитой пористой структурой и кислотно-основными центрами, высокой удельной поверхностью, суммарным объемом пор и высокими прочностными характеристиками. 2 з.п. ф-лы, 5 табл., 5 пр.
1. Способ получения носителей на основе оксида алюминия для катализаторов процессов нефтепереработки, включающий пластификацию шихты при смешении с жидкофазным пептизатором с получением твердообразной пластичной пасты, экструзию пасты в гранулы, сушку гранул, термообработку гранул, отличающийся тем, что предварительно проводят диспергирование исходных порошковых сырьевых компонентов шихты, которая включает гидроксиды алюминия псевдобемитного, или байеритно-бемитного, или бемитного фазовых составов, после чего проводят их сухое смешение с добавкой, которая влияет на структуру носителя, представляющей собой алюмосиликат, оксид кремния, оксид циркония, карбамид, метилцеллюлозу, карбонат аммония или гидрокарбонат аммония, с размером зерна от 5 до 50 мкм, или добавкой, которая влияет на структуру носителя, представляющей собой графит или γ-Al2O3, с размером зерна от 5 до 315 мкм в количестве от 5 до 65 % мас., затем добавляют жидкофазный пептизатор, проводят экструзию полученной пасты через фильеру сложного профиля с диаметром от 1,0 до 5,0 мм, затем проводят сушку гранул в течение не менее 24 часов при температуре от 15 до 30°С, а последующую термообработку гранул проводят при температуре от 550 до 1150°С в течение от 3 до 5 часов с получением носителя в виде гранул.
2. Способ по п.1, отличающийся тем, что в качестве жидкофазного пептизатора используют воду или водные растворы азотной, или серной, или фосфорной, или борной, или лимонной кислот заданных концентраций для процесса пластификации шихты с кислотными эквивалентами от 0,01 до 0,300 г кислоты /γ-Al2O3.
3. Способ по п.1, отличающийся тем, что в качестве добавки используют оксиды кремния, или оксид циркония, или алюмосиликат, или карбамид, метилцеллюлозу, или карбонат, или гидрокарбонат аммония, или графит, или γ-Al2O3.
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРИРОВАНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, КАТАЛИЗАТОР ГИДРИРОВАНИЯ И СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ГИДРИРОВАНИЯ | 2014 |
|
RU2660430C2 |
Способ приготовления носителя для катализатора гидроочистки | 2020 |
|
RU2726374C1 |
Способ приготовления носителя для катализатора гидроочистки | 2016 |
|
RU2633967C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ НОСИТЕЛЯ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ | 2016 |
|
RU2623432C1 |
НОСИТЕЛЬ КАТАЛИЗАТОРА ГИДРООБЛАГОРАЖИВАНИЯ ВАКУУМНОГО ГАЗОЙЛЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) | 2015 |
|
RU2605939C2 |
WO 2004046060 A1, 03.06.2004 | |||
CN 107971039 B, 30.10.2020. |
Авторы
Даты
2022-03-15—Публикация
2021-04-08—Подача