Изобретение относится к области аналитической химии и может быть рекомендовано для селективного определения ципрофлоксацина в пищевых продуктах и биологических жидкостях с помощью пьезоэлектрического иммуносенсора.
В настоящее время для определения ципрофлоксацина применяют методы: хроматографические [Vella J. A simple HPLC-UV method for the determination of ciprofloxacin in human plasma / J. Vella, F. Busuttil, N.S. Bartolo, C. Sammut, V. Ferrito, A. Serracino-Inglott, L.M. Azzopardi, G. LaFerla // Journal of Chromatography B. - 2015. - V. 989. - P. 80-85; Scherer R. Determination of Ciprofloxacin in Pharmaceutical Formulations Using HPLC Method with UV Detection / R. Scherer, J. Pereira, J. Firme, M. Lemos, M. Lemos // Indian Journal of Pharmaceutical Sciences. - 2014. - V. 76(6). - P. 541-544; Sirisha T. Simultaneous Determination of Ciprofloxacin and Tinidazole in Tablet Dosage Form by Reverse Phase High Performance Liquid Chromatography / T. Sirisha, B.M. Gurupadayya, S. Sridhar // Tropical Journal of Pharmaceutical Research. - 2014. - V. 13(6). - P. 981-987; Chen B. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples / B. Chen, J. Han, Y. Wang, C. Sheng, Y. Liu, G. Zhang, Y. Yan // Food Chemistry. - 2014. - V. 148. - P. 105-111], недостатками таких методов является достаточно длительная процедура пробоподготовки, необходимость дорогостоящего оборудования и присутствия высококвалифицированных специалистов; спектрофотометрические [Cazedey E.C.L. A First-Derivative Spectrophotometric Method for the Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution / E.C.L. Cazedey, R. Bonfilio, M.B. , H.R.N. Salgado // Physical Chemistry. - 2012. - V. 2(6). - P. 116-122; Dung N.T. Extractive spectrophotometric methods for determination of ciprofloxacin in pharmaceutical formulations using sulfonephthalein acid dyes / N.T. Dung, L.H. Bau, L.Q. Thao, N.Q. Dat. // Vietnam Journal of Chemistry, International Edition. - 2017. - V. 55(6). - P. 767-774], данные методы отличаются небольшим диапазоном определяемых концентраций (50-100 мкг/мл и 0,5-25 мкг/мл), а также низкой чувствительностью (>100 нг/мл).
Наиболее близким по технике выполнения, является метод [Garrido J.M.P.J. β-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection / J.M.P.J. Garrido, M. Melle-Franco, K. , F. Borges, C.M.A. Brett, E.M.P.J. Garrido. // Journal Of Environmental Science And Health, Part A. - 2016. - V. 52(4). P. - 313-319], основанный на электрохимическом сенсоре, электрод которого модифицирован многостенными углеродными нанотрубками. Метод характеризуется стабильностью и экспрессностью, а также продолжительным сроком службы сенсора, однако чувствительность данного метода не высока, диапазон определяемых содержания составляет 3,3-26,5 мг/мл, а предел обнаружения равен 16,6 мкг/мл.
Задачами данного изобретения являются упрощение процедуры формирования рецепторного покрытия пьезоэлектрического сенсора, сокращение времени подготовки к анализу, продление срока службы пьезоэлектрического сенсора, проведение измерений с возможностью регенерации распознающего слоя.
Поставленные задачи решаются тем, что определение антибиотика проводится в конкурентном формате иммуноанализа с помощью пьезоэлектрического сенсора, рецепторное покрытие которого сформировано за счет применения магнитного углеродного нанокомпозита. Карбоксильные группы на поверхности магнитного углеродного нанокомпозита активировали смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100, путем выдерживания в течение 20 мин. Затем производили иммобилизацию белкового конъюгата ципрофлоксацина на поверхности нанокомпозита, после чего осуществляли модификацию пьезоэлектрического сенсора. Для этого 2 мкл нанокомпозита наносили на поверхность кварцевого резонатора, закрепление материала происходило за счет внешнего магнитного поля, создаваемого неодимовым магнитом. Выдерживали сенсор с покрытием 90 минут при комнатной температуре.
Перед определением фторхинолона, в пробу вводили фиксированное количество антител, полученную смесь выдерживали 20 минут, после чего наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электродов.
Аналитический сигнал обратно пропорционален концентрации определяемого фторхинолона в анализируемой пробе, концентрацию определяли по градуировочному графику, регенерацию рецепторного покрытия осуществляли нанесением на поверхность 0,003 М раствора роданида калия.
Отличительными признаками предложенного способа являются:
• Высокая чувствительность способа, позволяющая осуществить определение ципрофлоксацина в жидких средах в интервале концентраций 5-400 нг/мл, при этом предел обнаружения равен 2 нг/мл;
• Многократное (более 33 раз) использование иммуносенсора вследствие устойчивого покрытия, сформированного под действием внешнего магнитного поля, а также регенерации биорецепторного покрытия после каждого цикла измерения;
• Высокая селективность определения тетрациклинов в сложных по составу смесях (ПР%<4,50%);
• Относительно невысокая продолжительность анализа (15-20 мин).
Предложенный состав покрытия пьезоэлектрического сенсора позволяет проводить определение ципрофлоксацина в жидких средах в интервале концентраций 5-400 нг/мл. Высокая селективность обеспечивается использованием групп-специфичных иммунореагентов - поликлональных антител к ципрофлоксацину (ПР, % - 95,5-98,4). Легкость формирования распознающего слоя, и многократное (более 33 раз) использование иммуносенсора после регенерации биорецепторного покрытия обеспечивает снижение затрат на осуществление анализа.
Формирование рецепторного покрытия пьезоэлектрического сенсора осуществляли следующим образом:
В качестве физического преобразователя применяли пьезокварцевые резонаторы АТ-среза с собственной частотой колебаний 10±1 МГц с золотыми электродами диаметром 8 мм, полученными методом магнетронного напыления.
Предварительно активировали карбоксильные группы на поверхности магнитного углеродного нанокомпозита смесью, содержащей N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимид в 1%-ном водном растворе Triton Х-100.
Для иммобилизации белковых молекул конъюгата ципрофлоксацина на поверхности магнитного углеродного нанокомпозита к 10 мкл дисперсии композита в 1%-ном водном растворе Triton Х-100 добавляли 10 мкл активационной смеси и оставляли на 20 мин при комнатной температуре. Далее в систему вводили 10 мкл раствора с фиксированной концентрацией конъюгата ципрофлоксацина с бычьим сывороточным альбумином (0,25 мМ) и оставляли на 10-12 ч при температуре 4°С для формирования устойчивых связей.
Перед формированием рецепторного слоя поверхность электрода сенсора последовательно очищали 1 М раствором соляной кислоты, ацетоном и этанолом. Сенсор помещался в ячейку детектирования над неодимовым магнитом, наносили 2 мкл раствора магнитной углеродной композиции с белковым конъюгатом ципрофлоксацина, оставляли на 90 мин на воздухе при комнатной температуре, после чего промывали сенсор 200 мкл дистиллированной воды для удаления не связавшихся компонентов и высушивали в потоке теплого воздуха.
В пробу, объемом 5 мкл, содержащую фторхинолон, вводили фиксированное количество антител (5 мкл), соответствующее 50%-ному связыванию и выдерживали в течение 15 минут до завершения образования гомогенного иммунного комплекса определяемого соединения с антителами. Затем пробу наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электрода, выжидали 15 минут, после чего измеряли аналитический сигнал, вызванный образованием гетерогенного иммунного комплекса между несвязавшимися антителами и белковым конъюгатом ципрофлоксацина, иммобилизованном на поверхности электрода сенсора.
После измерения аналитического сигнала сенсора осуществляли разрушение образовавшегося иммунокомплекса и регенерацию биослоя. Частота колебаний сенсора при этом возвращается к исходному значению. После предварительной пробоподготовки, описанной выше, определяли концентрацию ципрофлоксацина в пробе по предварительно построенному градуировочному графику.
Для построения градуировочной зависимости использовали стандартные растворы фторхинолонов, содержащие 1, 2, 5, 10, 50, 100, 200, 300, 350, 400, 450 нг/мл ципрофлоксацина в количестве 5 мкл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживали 15 мин до завершения реакции.
Значение аналитического сигнала обратно пропорционально содержанию аналита в пробе.
Градуировочный график для определения ципрофлоксацина линеен в диапазоне концентраций 5-400 нг/мл: Δƒ=[2234±316]-[3.5±1.5]С, где Δƒ - аналитический сигнал, Гц; С - концентрация тетрациклина в пробе, нг/мл.
Примеры применения предлагаемого рецепторного покрытия пьезоэлектрического сенсора:
Пример 1. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 10 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=2200 Гц.
Пример 2. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 25 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=2148 Гц.
Пример 3. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 50 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=2062 Гц.
Пример 4. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 100 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=1889 Гц.
Пример 5. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 250 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=1370 Гц.
Пример 6. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 300 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.
Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.
Аналитический сигнал составил Δf=1197 Гц.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ПОКРЫТИЯ ПЬЕЗОЭЛЕКТРИЧЕСКОГО СЕНСОРА ДЛЯ ОПРЕДЕЛЕНИЯ ФТОРХИНОЛОНОВ В ЖИДКИХ СРЕДАХ | 2018 |
|
RU2706362C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕТРАЦИКЛИНОВ С ПОМОЩЬЮ ПЬЕЗОЭЛЕКТРИЧЕСКОГО СЕНСОРА | 2017 |
|
RU2687742C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СТРЕПТОМИЦИНА С ПОМОЩЬЮ ПЬЕЗОКВАРЦЕВОГО ИММУНОСЕНСОРА | 2009 |
|
RU2419797C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРАМФЕНИКОЛА С ПОМОЩЬЮ ПЬЕЗОКВАРЦЕВОГО ИММУНОСЕНСОРА | 2011 |
|
RU2497123C2 |
СПОСОБ СЕЛЕКТИВНОГО ОПРЕДЕЛЕНИЯ НОНИЛФЕНОЛА В РАСТВОРЕ С ПОМОЩЬЮ ПЬЕЗОКВАРЦЕВОГО ИММУНОСЕНСОРА | 2005 |
|
RU2287820C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ХЛОРАЦЕТАНИЛИДНЫХ ГЕРБИЦИДОВ (АЦЕТОХЛОР, БУТАХЛОР, АЛАХЛОР) С ПОМОЩЬЮ ПЬЕЗОКВАРЦЕВОГО ИММУНОСЕНСОРА | 2007 |
|
RU2326384C1 |
СПОСОБ ДЕТЕКТИРОВАНИЯ СУЛЬФАМЕТОКСАЗОЛА С ПОМОЩЬЮ ПЬЕЗОКВАРЦЕВОГО ИММУНОСЕНСОРА | 2004 |
|
RU2271006C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ АНТИТЕЛ В СЫВОРОТКАХ КРОВИ К ПАТОГЕННЫМ БАКТЕРИЯМ YERSINIA ENTEROCOLITICA СЕРОВАРОВ O:3, O:5 ИЛИ O:6,30 С ПРИМЕНЕНИЕМ ПЬЕЗОГРАВИМЕТРИЧЕСКОГО ИММУНОСЕНСОРА | 2005 |
|
RU2288472C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЦИПРОФЛОКСАЦИНА МЕТОДОМ ОБРАЩЕННО-ФАЗНОЙ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ | 2020 |
|
RU2751338C1 |
СОСТАВ ПОКРЫТИЯ ПЬЕЗОКВАРЦЕВОГО РЕЗОНАТОРА ДЛЯ ОПРЕДЕЛЕНИЯ АНТИТЕЛ YERSINIA ENTEROCOLITICA В ВОДНЫХ СРЕДАХ | 2005 |
|
RU2287585C1 |
Изобретение относится к области аналитической химии и может быть рекомендовано для селективного определения ципрофлоксацина в пищевых продуктах и биологических жидкостях с помощью пьезоэлектрического иммуносенсора. Определение антибиотика проводится в конкурентном формате иммуноанализа с помощью пьезоэлектрического сенсора, рецепторное покрытие которого сформировано за счет применения магнитного углеродного нанокомпозита. Карбоксильные группы на поверхности магнитного углеродного нанокомпозита активировали смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100 путем выдерживания в течение 20 мин. Затем производили иммобилизацию белкового конъюгата ципрофлоксацина на поверхности нанокомпозита, после чего осуществляли модификацию пьезоэлектрического сенсора. Для этого 2 мкл нанокомпозита наносили на поверхность кварцевого резонатора, закрепление материала происходило за счет внешнего магнитного поля, создаваемого неодимовым магнитом. Выдерживали сенсор с покрытием 90 минут при комнатной температуре. Перед определением фторхинолона в пробу вводили фиксированное количество антител, полученную смесь выдерживали 20 минут, после чего наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электродов. Аналитический сигнал обратно пропорционален концентрации определяемого фторхинолона в анализируемой пробе, концентрацию определяли по градуировочному графику, регенерацию рецепторного покрытия осуществляли нанесением на поверхность 0,003 М раствора роданида калия. Технический результат - упрощение процедуры формирования покрытия пьезоэлектрического сенсора, сокращение времени подготовки к анализу, продление срока службы пьезоэлектрического сенсора, проведение измерений с возможностью регенерации распознающего слоя. 6 пр.
Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов, отличающееся тем, что поверхность магнитного углеродного нанокомпозита, представляющего собой карбоксилированные углеродные нанотрубки с иммобилизованными на поверхности магнитными наночастицами, активируют смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100, иммобилизуют белковый конъюгат ципрофлоксацина, после чего полученную композицию фиксируют на поверхности пьезоэлектрического сенсора под действием внешнего магнитного поля, создаваемого неодимовым магнитом, далее проводят иммунохимическую реакцию.
КОМПОЗИЦИЯ ПОКРЫТИЯ ПЬЕЗОЭЛЕКТРИЧЕСКОГО СЕНСОРА ДЛЯ ОПРЕДЕЛЕНИЯ ФТОРХИНОЛОНОВ В ЖИДКИХ СРЕДАХ | 2018 |
|
RU2706362C1 |
WO 2019079882 A1, 02.05.2019 | |||
KR 20160006374 A, 19.01.2016 | |||
EP 2916876 A1, 16.09.2015. |
Авторы
Даты
2022-11-10—Публикация
2022-01-11—Подача