Область техники, к которой относится изобретение
Изобретение относится к материалам, используемым в дорожно-строительной промышленности, а именно к модифицирующим добавкам и способам модифицирования углеводородных связующих материалов, таких как битумы, асфальты, гудроны и т.п.
Уровень техники
Известно вяжущее для дорожных покрытий, получаемое путем введения в битум при температуре 80-200°C и непрерывном перемешивании дивинилстирольных блок-сополимеров типа СБС, взятых в количестве 0,1-10% от массы битума в виде 5-25%-ного раствора в легких растворителях (SU 272881, 03.07.1970).
Также известно битумное вяжущее для дорожных покрытий, получаемое смешением 85-98 мас.% битума, 15-2 мас.% разветвленного или линейного стирольного блок-сополимера при 200°C-250°C в течение 15-40 минут (ЕР 0458386, 18.05.1990).
Указанные вяжущие имеют достаточно высокую прочность, эластичность, однако не обеспечивают хорошее совмещение полимера с битумом, из-за чего структура вяжущего является негомогенной. Негомогенная структура является причиной образования трещин на дорожном покрытии при температуре ниже минус 10°C. Получение вяжущих при температурах 200-250°C не решает эту проблему, что привело к разработке различных модификаторов-добавок для полимерных вяжущих. На сегодняшний день весьма перспективными модификаторами являются углеродные первичные наноматериалы (УПН), например углеродные нанотрубки. Их введение позволяет достигнуть более высоких физико-механических свойств, таких как теплостойкость, прочность, трещиностойкость. Однако при введении наноторубок в вяжущее, ввиду их склонности к самопроизвольной агрегации, исследователи сталкиваются с рядом технических проблем, таких как сложность обеспечения равномерности распределения нанотрубок в объеме и обеспечение наноразмерной дисперсности.
Например, в прототипе заявленного изобретения RU 2496812 (C08L95/00, 01.08.2012) полимер-битумное вяжущее модифицируют с помощью одностенных углеродных нанотрубок (ОУНТ). В качестве углеводородной среды-носителя для ОУНТ используют индустриальное масло. Хотя модифицированное полимер-битумное вяжущее в прототипе и обладает более высокими физико-механическими свойствами, высокое содержание индустриального масла при одновременно невысоком содержании полимера (2-3%) не способно сформировать прочную углеводородную структурную сетку, что негативно сказывается, например, на устойчивости к процессам старения полимер-битумного вяжущего.
Таким образом, в уровне техники, по-прежнему, существует потребность в разработке модификаторов для полимерно-битумных вяжущих, которые позволяли бы формировать прочную углеводородную структурную сетку, что в свою очередь позволит повысить физико-механические свойства готовых полимерно-битумных вяжущих при одновременном повышении их устойчивости к старению и увеличении адгезионного сцепления. Кроме того, одним из требований к таким модификаторам является их низкий расход с целью снижения экономических затрат на получение полимер-битумных вяжущих.
Краткое описание изобретения
В настоящем описании в различных вариантах осуществления предложена модифицирующая композиция для полимерно-битумных вяжущих, которая представляет собой суспензию, состоящую из среды-носителя и диспергированных в ней агрегатов углеродных нанотрубок (далее – наносуспензия). Содержание нанотрубок составляет 0,00005-0,005 мас. % сверх 100% от мас. среды-носителя. Среда-носитель представляет собой II Вакуумный погон или Экстракт селективной очистки. Остаточный.
В некоторых вариантах осуществления композиции углеродные нанотрубки диспергируют в среде-носителе путем ультразвуковой кавитации.
В некоторых вариантах осуществления композиции время ультразвуковой кавитации составляет от 2 до 4 минут.
В некоторых вариантах осуществления композиции время ультразвуковой кавитации составляет 2; 3 или 4 минуты.
В некоторых вариантах осуществления композиции время ультразвуковой кавитации предпочтительно составляет 2 минуты для наносуспензии, содержащей 0,00005 мас.% углеродных нанотрубок, 3 минуты для наносуспензии, содержащей 0,0005 мас.% углеродных нанотрубок, и 4 минуты для наносуспензии, содержащей 0,005 мас.% углеродных нанотрубок.
В другом аспекте изобретения предложено полимерно-битумное вяжущее, которое содержит битум и следующие компоненты сверх 100 %: модифицирующую композицию, описанную выше – 1-3,5 мас. %, и стирол-бутадиен стирольный полимер – 2,5 – 5,5 мас. %.
В предпочтительном варианте осуществления изобретения полимерно-битумное вяжущее содержит от 2,5 мас.% до 3,2 мас. % модифицирующей композиции.
В предпочтительном варианте осуществления изобретения полимерно-битумное вяжущее содержит 2,5 мас.%, 3,5 мас.%; 4,0 мас.%; 4,5 мас.%; 5,0 мас.% или 5,5% стирол-бутадиен стирольного полимера.
В другом аспекте изобретения предложен способ получения модифицирующей добавки, включающий обеспечение среды-носителя и углеродных нанотрубок в количестве 0,00005-0,005 мас. % сверх 100 % от мас. среды-носителя, диспергирование нанотрубок в среде-носителе путем ультразвуковой кавитации, при этом среда-носитель представляет собой II Вакуумный погон или Экстракт селективной очистки. Остаточный.
В другом аспекте изобретения предложено применение среды II Вакуумный погон в качестве среды-носителя для углеродных нанотрубок.
В другом аспекте изобретения предложено применение среды Экстракт селективной очистки. Остаточный в качестве среды-носителя для углеродных нанотрубок.
Краткое описание чертежей
На Фиг. 1 показан график влияния ультразвуковой кавитации на средний приведённый диаметр Таунит-МД в углеводородной системе на основе II Вакуумного погона;
На Фиг. 2 показан график влияния ультразвуковой кавитации на средний приведённый диаметр Таунит-МД в углеводородной системе на основе Экстракта селективной очистки. Остаточного;
На Фиг. 3 представлена таблица с физико-механическими свойствами полимерно-битумных вяжущих (ПБВ), включая ПБВ, содержащие модифицирующие композиции в количестве 2,0 мас.% согласно изобретению, а также сравнительные образцы и ПБВ согласно прототипу.
На Фиг. 4 представлена таблица с физико-механическими свойствами полимерно-битумных вяжущих (ПБВ), включая ПБВ, содержащие модифицирующие композиции в количестве 3,5 мас.% согласно изобретению, а также сравнительные образцы и ПБВ согласно прототипу.
Раскрытие сущности изобретения
Техническим результатом заявленного изобретения является повышение физико- механических свойств полимер-битумного вяжущего (ПБВ), а именно улучшение теплостойкости и стойкости к низким температурам, увеличение эластичности при сохранении пластичности, при одновременном ингибировании старения и улучшении адгезионного сцепления. Технический результат достигается за счет получения среднего приведенного диаметра частиц наноматериалов менее 10 нм и обеспечения равномерного объемного распределения углеродных первичных наноматериалов (УПН) как в среде-носителе, так и в модифицируемой матрице ПБВ, что позволяет сформировать прочную углеводородную структурную сетку в объеме готового вяжущего.
Авторами изобретения было неожиданно обнаружено, что формирование устойчивых и стабильных наносуспензий среда-носитель – углеродные нанотрубки при одновременно высокой совместимости среды-носителя с полимером термоэластопластом обеспечивают следующие углеводородные среды: II Вакуумный погон и Экстракт селективной очистки. Остаточный.
II Вакуумный погон либо газойль – продукт переработки нефти, смесь жидких углеводородов, преимущественно с количеством атомов углерода от 10 до 20 и примесей с пределами выкипания 200 – 300 °C и молекулярной массой 50 – 300 г/моль. Как правило, его получают дистилляцией нефти или продуктов её переработки (если он не был отделён в процессе перегонки). II Вакуумный погон (газойль) является углеводородной средой, ранее не рассматривавшийся для производства полимерно-битумного вяжущего.
Экстракт селективной очистки. Остаточный - продукт переработки нефти. Представляет собой сложную смесь высокомолекулярных углеводородных соединений. Экстракт селективной очистки. Остаточный получают следующим образом: гудрон, представляющий собой самый высококипящий продукт, полученный в результате перегонки на атмосферно-вакуумной колонне нефти, идет на пропановую деасфальтизацию, где происходит разделение на асфальт и деасфальтизат. Далее деасфальтизат поступает на селективную очистку, где происходит разделение на рафинад, из которого получают дизельное топливо и Экстракт селективной очистки. Остаточный.
Пример 1 А) Приготовление модифицирующей композиции на основе среды II Вакуумный погон.
Для приготовления модифицирующей композиции использовали углеродные первичные наноматериалы и углеводородную среду-носитель.
В качестве углеродных первичных материалов использовали углеродные нанотрубки (УНТ) серии «Таунит», которые представляют собой квазиодномерные наномасштабные, нитевидные образования поликристаллического графита преимущественно цилиндрической формы с внутренним каналом. Физико-химические свойства углеродных нанотрубок представлены в Таблице 1.
Таблица 1
Физико-химические показатели углеродных нанотрубок серии «Таунит»
- начальное
- после очистки
≤ 1
В качестве углеводородной среды-носителя УТН использовали II Вакуумный погон (газойль) производства ООО «Лукойл-Нижегороднефтеоргсинтез», который был получен при прямой перегонке нефти в атмосферно-вакуумной колонне при давлении 10–15 кПа (0,09–0,15 Атм). Маловязкий газойль характеризуется температурой вспышки 100 – 150°C и температурой застывания −15–22°C. Химический состав используемого в эксперименте II Вакуумного погона представлен в Таблице 2.
Таблица 2
Групповой состав II Вакуумного погона (газойля)
Для получения модифицирующей композиции нанотрубки вводили в среду-носитель и диспергировали с помощью ультразвуковой кавитации для получения стабильной наносуспензии. Для этого на аналитических весах с точностью 0,0001 г. в измерительный стеклянный термостакан с углеводородной средой взвешивали углеродный наноматериал (УНМ) – углеродные нанотрубки Таунит-МД, масса навески которого находилась в диапазоне концентраций от 0,000005 до 0,01% от массы углеводородной среды. Далее на лабораторных весах с точностью до 0,001 г. отвешивалась углеводородная среда в количестве 100 % в измерительный стеклянный термостакан – Модифицирующая композиция (МК). Стеклянный стакан с модифицирующей композицией помещали в шкаф ультразвукового зонда. В образец МК погружали ультразвуковой зонд, который закрепляли с помощью штатива. Выставляли параметры ультразвукового воздействия: количество энергии, передаваемое в зонд – 750 Дж, частота колебаний ультразвуковой волны – 20 кГц, амплитуда ультразвуковых колебаний наконечника зонда – 100% (характеризует процентное соотношение волн, находящихся в ультразвуковом диапазоне). Запуск ультразвуковой установки осуществляли с заранее установленными характеристиками. После запуска происходило ультразвуковое диспергирование комплексного модификатора в течение 1, 2, 3, 4, 5 и 6 минут, в зависимости от углеводородной-среды носителя и количества углеродных наномодификаторов.
Пример 1 Б) Приготовление модифицирующей композиции на основе среды Экстракт селективной очистки. Остаточный
Для приготовления модифицирующей композиции на основе среды Экстракт селективной очистки. Остаточный использовали операции, описанные в Примере 1(а). В качестве углеродных первичных материалов, аналогично Примеру 1 (а), использовали углеродные нанотрубки (УНТ) серии «Таунит», физико-химические которых представлены в таблице 1.
В качестве углеводородной среды-носителя использовали Экстракт селективной очистки. Остаточный производства ООО «Лукойл-Пермьнефтепереработка», г. Пермь, который представляет собой сложную смесь высокомолекулярных углеводородных соединений, групповой состав которой представлен в Таблице 3.
Таблица 3
Групповой состав Экстракта селективной очистки. Остаточного
Результаты исследований образцов, полученных в Примере 1(А) и Примере 1 (Б)
Как было указано выше, для достижения технического результата необходимо получить устойчивую суспензию агрегатов нанотрубок в углеводородной среде - наносуспензию.
В Таблице 4 приведены характеристики полученных модифицирующих композиций на основе таких сред как II Вакуумный погон и Экстракт селективной очистки. Остаточный при различном количественном содержании в них нанотрубок и времени обработки ультразвуковой кавитацией.
Таблица 4
Составы модифицирующих композиций и время УЗ кавитации
среды-носителя
Однородность модифицирующих композиций определяли по показателям дисперсности частиц углеродных наноматериалов в образцах материала, взятых из нескольких слоев исследуемых композиций, из каждого слоя было отобрано не менее трех проб из различных точек.
Дисперсный состав наноразмерных частиц первичных углеродных наноматериалов в объеме модифицирующих композиций определяли с помощью метода лазерной дифракции в исследуемом диапазоне размера частиц от 0,0008 до 6,5 мкм на приборе лазерный анализатор Zetatrac фирмы «Microtrac Inc.», в котором в качестве источника когерентного монохроматического излучения используется лазерный диод с длиной волны 780 нм.
Принцип действия применяемого анализатора основан на методе динамического рассеяния оптического излучения. Фотоприемник (кремниевый фотодиод) регистрирует опорный сигнал от источника излучения и рассеянное излучение диспергированными в кювете с дисперсионной жидкостью частицами, находящимися в Броуновском движении. При рассеянии на частицах, благодаря их движению, происходит изменение частоты излучения в соответствии с эффектом Доплера. Далее реализуется расчет автокорреляционной функции опорного и рассеянного сигнала. Обратное преобразование Фурье позволяет рассчитать значения интенсивностей рассеянного излучения, пропорциональных различным размерам частиц.
Результаты влияния ультразвуковой кавитации на средний приведенный диаметр первичного углеродного наноматериала Таунит-МД представлены на Фиг. 1.
На основе обработки и анализа полученных данных было установлено, что для УПН Таунит-МД время эффективного диспергирования зависит от его концентрации в системе. В ходе проведения исследования были установлены оптимальные временные режимы ультразвуковой кавитации, при которых в данной углеводородной системе наблюдались минимальные приведённые диаметры углеродного первичного наноматериала (УПН) Таунит-МД, представленные в таблицах 4 и 5.
Таблица 5
Модифицирующая композиция для полимерно-битумных вяжущих
Таунит - МД
Таунит - МД
(наносуспензия)
В наносуспензиях дисперсной фазой являются наноразмерные частицы твердого вещества, а дисперсионной средой – жидкость. Иначе наносуспензии – это взвеси нанопорошков в жидкостях. Наносуспензии с размерами частиц менее 100 нм также называются коллоидными растворами, или золями.
Результаты исследований полученных модифицирующих композиций показали, что данные системы являются коллоидными. Как известно, одной из главных характеристик таких систем является способность противостоять тенденции к агрегации частиц. Таким образом, разработанные составы модифицирующих композиций представляют собой стабильные наносуспензии и, следовательно, обеспечивают стабильность свойств во времени, однородность и равномерность распределения всех компонентов в объеме системы, тем самым при объединении с полимером и битумом обеспечивают формирование прочной углеводородной структурной сетки.
Пример 2 (А). Получение полимер-битумных вяжущих с использованием 2,0% разработанных модифицирующих композиций на основе сред II Вакуумный погон и Экстракт селективной очистки. Остаточный
Для приготовления полимер-битумного вяжущего (ПБВ) использовали 2,0% модифицирующих композиций, полученных в Примере 1 (а) и Примере 1 (б), битум нефтяной дорожный БНД 100/130 и стирол-бутадиен стирольный полимер SBS 30L-01.
ПБВ готовили следующим образом:
В предварительно отвешенный в количестве 100% разогретый, до рабочей температуры (150-155°С) в сушильном шкафу битум вводили модифицирующую композицию, выбранную из композиции на основе II Вакуумного погона или Экстракта селективной очистки. Остаточного в количестве 2,0 %. Перемешивали с помощью лопастного смесителя в течение 1-5 минут, затем вводили полимер стирол-бутадиен стирольный полимер SBS 30L-01 в количестве 1,0 - 4,5% и перемешивали с помощью лопастного смесителя в течение 40-90 минут, до однородного состояния. После чего полимерно-битумное вяжущее помещали в сушильный шкаф при температуре 130-140°С в течение 30-60 минут для стабилизации структуры. Составы приготовленных ПБВ приведены в Таблице 6.
Таблица 6
Составы ПБВ
БНД 100/130
SBS 30L-01
Далее исследовали физико-механические свойства полученных составов ПБВ, результаты которых приведены в Таблице на Фиг. 3.
Пример 2 (Б). Получение полимер-битумных вяжущих с использованием 3,2 % разработанных модифицирующих композиций на основе сред II Вакуумный погон и Экстракт селективной очистки. Остаточный
ПБВ готовили аналогично Примеру 2 (А), но количество модифицирующих добавок составило 3,2 мас.%, в качестве битума использовали Битум БНД 70/100. Составы приготовленных ПБВ приведены в Таблице 7.
Таблица 7
Составы ПБВ
БНД 70/100
SBS 30L-01
Далее исследовали физико-механические свойства полученных составов ПБВ, результаты которых приведены в Таблице на Фиг. 4.
Результаты исследований ПБВ, приготовленных в Примере 2 (А) и Примере 2 (Б)
Как показали результаты исследований (Фиг. 3 и 4), модифицирование ПБВ разработанными композициями обеспечило повышение таких физико-механических свойств, как теплостойкость, устойчивость к низким температурам, а также эластичность при различных температурах, с сохранением пластичности, в сравнении с эталонными образцами, а также прототипом. Также полученные образцы обладают улучшенными показателями по устойчивости к процессам старения и улучшение адгезионного сцепления.
Таким образом, разработанные модифицирующие добавки хорошо совместимы с битумным вяжущим и полимером, их дополнительное нанокластерное структурирование позволяет обеспечить множественное локальное взаимодействие с асфальтеносмолистыми комплексами (основными структурообразующими элементами битумного вяжущего), что способствует формированию иерархически-связанных структур, образующих синергетические связи и функционирование всего комплекса в целом, что закономерно отображается на увеличении структурирования, ингибировании процессов старения и улучшении адгезионного сцепления.
название | год | авторы | номер документа |
---|---|---|---|
Модификаторы для полимерно-битумного вяжущего на основе сред II Вакуумный погон и Экстракт селективной очистки остаточный | 2020 |
|
RU2761220C1 |
Полимерно-битумное вяжущее для дорожного покрытия и способ его получения | 2016 |
|
RU2639902C1 |
Полимерно-битумное вяжущее с повышенной устойчивостью к сдвиговым деформациям и способ его получения | 2020 |
|
RU2765646C1 |
ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ ДЛЯ ДОРОЖНОГО ПОКРЫТИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2011 |
|
RU2477736C2 |
Полимерно-битумная композиция и способ ее получения | 2020 |
|
RU2748078C1 |
Наномодификатор строительных материалов | 2016 |
|
RU2637246C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИЙ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК И ПОЛИОЛЕФИНОВ | 2011 |
|
RU2490204C1 |
Буровой раствор на углеродной основе с многостенными углеродными нанотрубками (МУНТ) | 2023 |
|
RU2821370C1 |
ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ | 2013 |
|
RU2562496C2 |
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО БИТУМА ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА | 2022 |
|
RU2798340C1 |
Изобретение относится к материалам, используемым в дорожно-строительной промышленности, а именно к применению Экстракта селективной очистки остаточного в качестве среды-носителя для углеродных первичных наноматериалов в модифицирующей добавке для битумного вяжущего. Техническим результатом заявленного изобретения является повышение физико-механических свойств полимер-битумного вяжущего, а именно улучшение теплостойкости и стойкости к низким температурам, увеличение эластичности при сохранении пластичности, при одновременном ингибировании старения и улучшении адгезионного сцепления. 3 з.п. ф-лы, 4 ил., 7 табл., 26 пр.
1. Применение Экстракта селективной очистки остаточного в качестве среды-носителя для углеродных первичных наноматериалов в модифицирующей добавке для битумного вяжущего.
2. Применение по п. 1, отличающееся тем, что битумное вяжущее содержит стирол-бутадиен-стирольный полимер.
3. Применение по п. 1, отличающееся тем, что Экстракт селективной очистки остаточный характеризуется следующим соотношением компонентов по массе, мас.%:
4. Применение по п. 1, отличающееся тем, что углеродные первичные наноматериалы диспергированы в Экстракте селективной очистки остаточном и средний приведенный диаметр частиц диспергированных углеродных первичных наноматериалов составляет до 10 нм.
МОДИФИКАТОР ДЛЯ ПРИГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ И СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА | 2016 |
|
RU2663243C2 |
JENNY HILDING et al., "Dispersion of Carbon Nanotubes in Liquids" // J | |||
Dispers | |||
Sci | |||
and Technol., v | |||
Пишущая машина для тюркско-арабского шрифта | 1922 |
|
SU24A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
СПОСОБ ПОЛУЧЕНИЯ ПЛАСТИФИКАТОРА И ПЛАСТИФИКАТОР | 2006 |
|
RU2313562C1 |
ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2496812C1 |
СПОСОБ ПОЛУЧЕНИЯ НЕФТЯНЫХ ПЛАСТИФИКАТОРОВ | 1999 |
|
RU2156276C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КОМПОЗИЦИИ ДЛЯ ГИДРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ НА БИТУМИНОЗНО-ПОЛИМЕРНОЙ ОСНОВЕ | 1998 |
|
RU2142969C1 |
US 20100227409 A1, 09.09.2010. |
Авторы
Даты
2023-04-11—Публикация
2021-11-30—Подача