Изобретение относится к области создания износостойких функциональных покрытий на основе квазикристаллов системы Al - Cu - Fe для защиты от механических нагрузок изделий прецизионного машино- и энергомашиностроения.
Известны сплавы с высокой износостойкостью на основе железа (патенты РФ №2359056, №2332509, №2337178), меди (патенты РФ 2349621. №2525876, №2553799), никеля (патенты РФ №2219279, №2418091, №2527543, №2561627) и алюминия (патенты РФ №2262554, №2413024, №2434713).
Известны также износостойкие сплавы на основе квазикристаллических соединений Al - Cu - Fe, успешно работающих в условиях сухого трения (патенты РФ №2362839, №2434077). Последний сплав взят в качестве прототипа, содержащий (масс. %):
медь - 2-5;
карбид вольфрама - 20-40
квазикристалл Al - Cu - Fe - остальное.
Сплав имеет относительно высокую микротвердость (400-500 HV) и может работать в режиме сухого трения.
Общим недостатком известных сплавов, в т.ч. и сплава - прототипа является то, что они не выдерживают динамических нагрузок (экстремальные условия работы - пуск и остановку двигателя, прекращение подачи смазки). Для этого микротвердость покрытия должна быть на уровне 700-800 HV.
Техническим результатом изобретения является создание износостойкого сплава на основе квазикристаллической композиции Al - Cu - Fe, обеспечивающего повышение микротвердости покрытия более 700 HV за счет дополнительного введения карбида титана и циркония и выбора диапазона легирующих компонентов.
Технический результат достигается за счет введения в сплав на основе квазикристаллической композиции карбида титана с микротвердостью 32,0 ГПа в количестве 20-30 масс. %. В качестве пластификатора используется цирконий, который когерентно связывается с квазикристаллической матрицей.
Требуемый результат достигается при следующем соотношении компонентов (масс. %):
цирконий - 4-7;
карбид титана - 20-30;
квазикристаллы Al - Cu - Fe - остальное.
В качестве основы выбран известный стабильный квазикристалл системы Al - Cu - Fe с соотношением компонентов, масс. %:
алюминий - 65;
медь - 21,5-23,5;
железо - 11,0-13,5.
Эти составы обеспечивают стабильное существование квазикристаллической фазы в процессе нанесения функциональных покрытий и в ходе их дальнейшей эксплуатации.
Цирконий выступает в качестве эффективного пластификатора. Экспериментально установлено, что содержание циркония менее 4% не дает нужного эффекта, а более 7% приводит к уменьшению микротвердости.
В качестве упрочняющей компоненты экспериментально были опробованы HfC, ZrC, VC, NbC и TiC, имеющие показатели микротвердости выше, чем у WC. Наилучшая технологичность получения покрытий с использованием метода сверхзвукового холодного газодинамического напыления (ХГДН) была достигнута при изготовлении функциональных покрытий при добавлении в сплав 20-30 масс. % TiC. Покрытие получалось с требуемой микротвердостью, качественное, без трещин и сколов. При содержании менее 20% TiC в сплаве покрытие имело недостаточную микротвердость, при содержании TiC более 30% имело место образование трещин.
Ниже приводится конкретный пример реализации предлагаемого изобретения.
Выплавка предлагаемого состава сплава производилась на высокочастотной установке типа ЛЗ-13 мощностью 10 кВт с рабочей частотой 880 кГц в алундовых тиглях. Масса слитка составляла 1,0 кг. Последовательность введения компонентов следующая: (Al - Cu - Fe)→Zr→TiC.
Карбид титана вводился в расплав в виде наноразмерных частиц фракции 60-80 нм.
После получения слитка осуществлялось его дробление на высокоскоростной щековой дробилке типа «Пульверизетт-1» до фракции 3-5 мм, а затем на дезинтеграторной установке типа ДЕЗИ-15 до фракции 20-60 мкм.
Из полученного порошка методом ХГДН на установке типа ДИМЕТ-3 с приставкой из программного комплекса Kawasaky было нанесено покрытие при скоростях напыления 780-800 м/с и температуре гетерофазного потока 110°С. Эти режимы обеспечивают отсутствие пористости и высокую адгезию покрытия к ленточной подложке из стали Х15Ю5. Толщина полученного покрытия составляла 80-120 мкм. Определение микротвердости производилось по методу Виккерса с использованием микротвердомера AFFRI DM-8 до динамических нагрузок и после них.
Составы полученных покрытий следующие (масс. %):
1.
- цирконий - 4,0;
- карбид титана - 20,0;
- квазикристалл Al - Cu - Fe - остальное,
2.
- цирконий - 7,0;
- карбид титана - 30,0;
- квазикристалл Al - Cu - Fe - остальное.
Оценка микротвердости разработанных покрытий проводилась в соответствии с ускоренной оценкой износостойкости сопряжений в условиях сухого трения. В качестве контртела была выбрана сталь 20X13. Испытания проводили при линейной скорости 5,0 м/с. Контактное давление при данной нагрузке составляло 18-20 МПа. Результаты испытаний приведены в табл. 1.
Полученные результаты испытания покрытий показывают их пригодность для практического использования в элементах машино- и энергомашиностроения в качестве защитных покрытий при динамических нагрузках.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ НА ОСНОВЕ КВАЗИКРИСТАЛЛА СИСТЕМЫ Al-Cu-Fe ДЛЯ НАНЕСЕНИЯ ИЗНОСОСТОЙКОГО, НАНОСТРУКТУРНОГО ПОКРЫТИЯ | 2009 |
|
RU2434077C2 |
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ОСНОВЕ КВАЗИКРИСТАЛЛИЧЕСКОГО СПЛАВА СИСТЕМЫ Al-Cu-Fe | 2021 |
|
RU2781329C1 |
СОСТАВ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ | 2009 |
|
RU2402585C1 |
Износостойкий сплав на основе меди | 2023 |
|
RU2812936C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО НИКЕЛЕВОГО ПОКРЫТИЯ С КВАЗИКРИСТАЛЛИЧЕСКИМИ ЧАСТИЦАМИ | 2011 |
|
RU2478739C1 |
Сплав на основе алюминия для нанесения износостойких покрытий | 2022 |
|
RU2796583C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КВАЗИКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА | 2006 |
|
RU2353698C2 |
СПОСОБ ПОЛУЧЕНИЯ КВАЗИКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА | 2014 |
|
RU2588957C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО АРМИРОВАННОГО ПОРОШКОВОГО МАТЕРИАЛА | 2014 |
|
RU2573309C1 |
СОСТАВ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ | 2008 |
|
RU2394861C1 |
Изобретение относится к области создания износостойких функциональных покрытий на основе квазикристаллов системы Al-Cu-Fe для защиты от механических нагрузок изделий прецизионного машино- и энергомашиностроения. Сплав на основе квазикристаллической композиции Al-Cu–Fe содержит, мас.%: цирконий 4,0-7,0; карбид титана 20,0-30,0; квазикристалл Al-Cu-Fe - остальное, причем квазикристалл Al-Cu-Fe имеет следующий состав, мас.%: алюминий 65; медь 21,5-23,5; железо 11,0-13,5. Техническим результатом изобретения является повышение микротвердости покрытия из сплава более 700 HV. 1 з.п. ф-лы, 1 табл.
1. Сплав на основе квазикристаллической композиции Al-Cu-Fe, отличающийся тем, что он дополнительно содержит цирконий и карбид титана при следующем соотношении компонентов, мас.%:
причем квазикристалл Al-Cu-Fe имеет следующий состав, мас.%:
2. Сплав по п. 1, отличающийся тем, что карбид титана введен в расплав в виде наноразмерных частиц фракции 60-80 нм.
СПЛАВ НА ОСНОВЕ КВАЗИКРИСТАЛЛА СИСТЕМЫ Al-Cu-Fe ДЛЯ НАНЕСЕНИЯ ИЗНОСОСТОЙКОГО, НАНОСТРУКТУРНОГО ПОКРЫТИЯ | 2009 |
|
RU2434077C2 |
СПОСОБ НАНЕСЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ИЗНОСОСТОЙКИХ ЭЛЕКТРОПРОВОДЯЩИХ ПОКРЫТИЙ | 2007 |
|
RU2362839C1 |
Способ контроля износа электрода | 1988 |
|
SU1524975A1 |
KR 1020020005942 A, 18.01.2002 | |||
KR 1020020087811 A, 23.11.2002. |
Авторы
Даты
2023-04-11—Публикация
2022-09-14—Подача