Изобретение относится к области ветеринарии, биотехнологии и молекулярной биологии и представляет собой набор олигонуклеотидов для идентификации и детекции участков генов tetA, tetM, tetO, обеспечивающих устойчивость к тетрациклинам у бактерий, выявленных в результате ветеринарного мониторинга, с помощью детектирующего амплификатора.
Тетрациклины, представляют собой семейство антибиотиков, широкого спектра действия, проявляющими активность в отношении широкого спектра грамположительных и грамотрицательных бактерий. Применяются для лечения инфекций домашней птицы, крупного рогатого скота, овец и свиней. В некоторых случаях, например, для терапевтического лечения большого количества домашней птицы, выращиваемой на коммерческих фермах, антибиотики добавляют непосредственно в корм или воду или могут вводиться в виде аэрозолей. Тетрациклины используются в аквакультуре для борьбы с инфекциями у лосося, сома и омаров [1,2]. Их также распыляют на фруктовые деревья и другие растения для лечения заражения Erwinia amylovara, вводят в пальмы для лечения микоплазменных инфекций и используют для борьбы с заражением семян Xanthomonas campestis (черная гниль). Они также находят применение в лечении насекомых, имеющих коммерческую ценность; например, окситетрациклин используется для лечения гнильца медоносных пчел, который вызывается либо личинками Bacillus, либо Streptococcus pluton.
Устойчивость к тетрациклинам часто связана с приобретением новых генов, которые кодируют энергозависимый отток тетрациклинов или белок, защищающий бактериальные рибосомы от действия тетрациклинов. Большинство генов tet у бактерий связаны с мобильными плазмидами, транспозонами, конъюгативными транспозонами и интегронами (генными кассетами). Эти мобильные единицы позволили генам tet перемещаться от вида к виду и в широкий диапазон родов путем конъюгации. Гены грамотрицательных tet, впервые описанные у Enterobacteriaceae и Pseudomonadaceae, теперь обнаруживают также у Neisseria, Haemophilus, Mannheimia, Treponema и Vibrio [3]
Существуют различные методы идентификации и детекции генетических детерминант резистентности, основанные на использовании технологии ДНК-чипов (RU 2685188 C2, RU 2415932 C1, RU 2415937 C1) и нескольких разновидностей ПЦР: метод одноцепочечного конформационного полиморфизма (PCR-SSCP), анализ полиморфизма длины рестрикционных фрагментов (PCR-RFLP) (RU 2646107 C1). Также возможно использование лигазной цепной реакции (ЛЦР). Метод секвенирования является «золотым стандартом» для идентификации неизвестных продуктов амплификации, что позволяет определять новые варианты ферментов [4].
Молекулярно-генетические методы направлены на выявление генов, ассоциированных с резистентностью, и характеризуются: высокой чувствительностью, скоростью получения результатов, стандартизованностью и технологичностью исследования. Важной особенностью является отсутствие манипуляций с живыми бактериальными культурами, что способствует предотвращению распространения и циркуляции микроорганизмов внутри лечебно-диагностических и лабораторных учреждений.
ПЦР в реальном времени (PCR-RT) метод является наиболее практичным методом идентификации, который используется для выявления генетических детерминант устойчивости к антибиотикам, включая гены устойчивости к тетрациклинам.
Целью настоящего изобретения является разработка набора олигонуклеотидных праймеров и зондов для ПЦР в реальном времени, используемой с целью выявления фрагментов генов устойчивости к тетрациклинам tetA, tetM и tetO из образцов продовольственного сырья, пищевых продуктов, от животных (фекалии), из объектов окружающей среды (смывы с клеток, стен, оборудования; образцы фекалий, подстилка и др.), без этапа выделения бактериальных изолятов, а также из чистых бактериальных культур.
Техническим результатом заявленного изобретения является высокая специфичность выбранных олигонуклеотидов специфичных к последовательностям генов tetA, tetM и tetO, по которым осуществляется определение устойчивости анализируемого образца к тетрациклинам.
Преимуществом данного изобретения является экспресс-выявление генов резистентности, к антибиотикам, наиболее часто применяемых в ветеринарной практике и являющихся критически важным для клинической медицины.
Заявленный технический результат достигается благодаря тому, что при проведении полимеразной цепной реакции в «режиме реального времени», используют специальный оригинальный набор олигонуклеотидных праймеров и зондов для выявления фрагментов генов устойчивости к тетрациклинам tetA, tetM и tetO, имеющий следующий нуклеотидный состав:
1) гена устойчивости к тетрациклинам tetA:
tetA-F CGGTCTTCTTCATCATGCAACT
tetA-R GAGTGAATGCAGAATGCCAAATG
tetA-Z ROX-TTTCGGCGAGGATCGCTTTCACT-BHQ2
2) гена устойчивости к тетрациклинам tetM:
tetM - F GGTACAACGAGGACGGATAATAC
tetM - R CCTGGCGTGTCTATGATGTT
tetM - Z ROX-ACGTCAGAGAGGAATTACAATTCAGACAG-BHQ2
3) гена устойчивости к тетрациклинам tetO:
tetO - F GAGCGTAGATGAAGGCACAA
tetO - R ATGGCCTGGCGTATCTATAATG
tetO - Z FAM-TCACTGCTGTCTGGATAGTGATTCCC-BHQ1
Согласно предлагаемому способу осуществляется идентификация трех генетических детерминант резистентности, чаще всего встречающихся в образцах продовольственного сырья, пищевых продуктов, от животных (фекалии), из объектов окружающей среды (смывы с клеток, стен, оборудования; образцы фекалий, подстилка и др.).
Олигонуклеотиды, входящие в набор, отличаются от известных из уровня техники тем, что имеют оригинальные олигонуклеотидные последовательности и позволяют специфическим образом детектировать и выявлять гены tetA, tetM и tetO, по которым осуществляется определение устойчивости анализируемого образца к тетрациклинам т.е. набор олигонуклеотидов является видоспецифичным.
Для выбора и анализа ДНК последовательностей генов резистентности были использованы базы данных ResFinder, Arg-ANNOT, CARD и NCBI BARRGD, а также последовательности геномов различных грамположительных и грамотрицательных бактерий, которые были ранее получены в ФГБУ «ВГНКИ» методом полногеномного секвенирования.
Для выбора генов-мишеней при разработке методики выявления генов устойчивости к тетрациклинам были проанализированы литературные данные о встречаемости генов группы tet в бактериях ветеринарного и медицинского происхождения. Кроме того, учитывались данные ветеринарного мониторинга антибиотикорезистености в РФ, распространенность генов tet среди возбудителей, данные полногеномного секвенирования изолятов из различных регионов РФ.
Ген tetA кодирует белок, осуществляющий выведение (эффлюкс) тетрациклинов из бактериальной клетки путем активного транспорта. Данный механизм резистентности к тетрациклинам широко распространен среди энтеробактерий, выделяемых от животных, птиц и из пищевых продуктов. Гены tetM и tetO кодируют белки, взаимодействующие с 23S рибосомальной РНК и препятствующие связыванию тетрациклинов с рибосомой. Данный механизм резистентности к тетрациклинам («защита мишени») распространен как среди грамотрицательных, так и грамположительных бактерий, выявляемых при ветеринарном мониторинге антибиотикорезистентности. Локализация tetM и tetА на мобильных генетических элементах способствует их горизонтальному переносу между микроорганизмами, в том числе таксономически и экологически отдаленными.
Подбор праймеров производили на онлайн-ресурсе «PrimerQuest Tool» (IDT). Для анализа множественного выравнивания последовательностей использовали программу «Ugene» и алгоритм Clustal omega. Для выбора оптимальных параметров структурных характеристик наборов праймеров использовали программы PCR Primer Stats и Oligo Analysis Tool, оценивали оптимальную температуру отжига, возможность образования димеров и «шпилек». Специфичность праймеров оценивали при помощи онлайн-ресурса «Primer-Blast», расположенном на сайте NCBI.
Последовательности и характеристики выбранных праймеров и зонда для детекции гена tetA и множественное выравнивание фрагментов гена из различных баз данных представлены в таблице 1 и на рисунке 1 (Множественное выравнивание последовательностей гена tetА. Последовательность праймера tetA-R1 дана в виде «reverse-complement»).
Характеристики праймеров и зонда для детекции гена tetA
°C
Последовательности и характеристики выбранных праймеров и зонда для детекции гена tetM и множественное выравнивание фрагментов гена из различных баз данных представлены в таблице 2 и на рисунке 2 (Множественное выравнивание последовательностей гена tetM. Последовательность праймера tetM-R1 дана в виде «reverse-complement»).
Характеристики праймеров и зонда для детекции гена tetM
°C
Последовательности и характеристики выбранных праймеров и зонда для детекции гена tetO и множественное выравнивание фрагментов гена из различных баз данных представлены в таблице 3 и на рисунке 3 (Множественное выравнивание последовательностей гена tetO).
Последовательности праймера tetO-R2 и зонда tetO-Z2 даны в виде «reverse-complement».
Характеристики праймеров и зонда для детекции гена tetO
°C
ампликона, п.н.
Выбранные комплекты праймеров и зондов не предназначены для выявления других генов устойчивости к терациклинам, например tet(B), (K), (L), (S), tet(38) и др.
Выделение ДНК из образца, осуществляют с помощью набора реагентов «АмплиПрайм ДНК-сорб-В» (ФБУН ЦНИИЭ) или «PureLink Genomic DNA» (Invitrogen), или «QIAamp DNA Mini Kit» (Qiagen) в соответствии с инструкцией производителя. В качестве отрицательного контроля выделения (Kв) используют 100 мм3 воды деионизованной. Срок хранения выделенной ДНК составляет при комнатной температуре не более 16 ч, при температуре (2-8) С - не более семи дней, при температуре не выше минус 16°С - не более шести месяцев.
Для приготовления соответствующих мастермиксов «ПЦР-смесь-1» в отдельных пробирках смешивают из расчета на одну реакцию (с учетом контролей выделения и ПЦР) следующие реагенты: растворы прямых и обратных ПЦР-праймеров и зондов в необходимой концентрации, 0,2 мм3 смеси дНТФ (25 ммоль/дм3) и воды деионизованной до 5 мм3. Смесь с полимеразой для выявления целевых генов готовили в отдельной пробирке (из расчета на каждую реакцию с учетом контролей выделения и ПЦР), вносят по 10 мм3 «ПЦР-смеси-1», 0,5 мм3 ДНК-полимеразы, 5 мм3 ПЦР-буфера с магнием. Затем вносят по 15 мм3 приготовленной смеси с полимеразой в тонкостенные пробирки и по 10 мм3 исследуемых или контрольных проб. Запускают на амплификаторе RotorGene соответствующие программы термоциклирования (табл. 4-5).
Программа амплификации для выявления фрагментов гена tetA и tetM
Программа амплификации для выявления фрагментов гена tetO
При идентификации генов устойчивости к тетрациклинам tetA, tetO, tetM результаты интерпретируются в качественном формате на основании значения Ct. Учет результатов амплификации фрагментов генов начинают с оценки результатов амплификации положительных и отрицательных контролей в соответствии с таблицей 6. Результаты ПЦР исследования считаются достоверными, если получены правильные результаты для положительного и отрицательного контролей ПЦР и отрицательного контроля выделения ДНК.
Необходимые показатели результатов анализа контролей
этап анализа
гена tetA
(канал Orange)
гена tetO
(канал Green)
В образце обнаружен ген устойчивости к тетрациклинам tetA, если в таблице результатов по каналу Orange определено среднее значение порогового цикла Ct ≤ 32, а результаты контрольных реакций соответствуют таблице 4.
В образце обнаружен ген устойчивости к тетрациклинам tetM, если в таблице результатов по каналу Orange определено среднее значение порогового цикла Ct ≤ 32, а результаты контрольных реакций соответствуют таблице 4.
В образце обнаружен ген устойчивости к тетрациклинам tetO, если в таблице результатов по каналу Green определено среднее значение порогового цикла Ct ≤ 35, а результаты контрольных реакций соответствуют таблице 6.
Изобретение имеет преимущество от известных из уровня техники методов возможностью экспресс-идентификации и высокой специфичностью. Для подтверждения специфичности изобретения готовили панель, содержащую ДНК, выделенную из различных чистых бактериальных культур коллекции ФГБУ «ВГНКИ». В качестве контрольных использовали изоляты, которые охарактеризованы полногеномно, с указанием на присутствие или отсутствие каких-либо из таргетных генов: tetA, tetO, tetM, а также отсутствие или присутствие других генов из группы tet (таблица 7).
Результаты амплификации фрагментов генов tetA, tetM, tetO, выделенных из чистых культур бактерий
амплификации фрагмента гена
с генами tetA/tetR, tetB
с генами tetA/tetR
к тетрациклинам, с геном tetO
к тетрациклинам, с геном tetМ
к тетрациклинам, с геном tetМ
к тетрациклинам, с генами tetМ и tetL
к тетрациклинам, с геном tetO
к тетрациклинам, с геном tetO
В рамках предложенной панели системы идентификации и детекции генов резистентности показали 100% специфичность: наблюдается амплификация только фрагментов генов tetA, tetO, tetM.
Способ не требует дорогостоящего оборудования и высококвалифицированного персонала.
Изобретение может быть использовано при выборе лекарственного препарата, режима лечения и с целью осуществления эпизоотического мониторинга.
Литературные источники
1. DePaola A, Hill W E, Harrell F M. Oligonucleotide probe determination of tetracycline-resistant bacteria isolated from catfish ponds. Mol Cell Probes. 1993;7:345-348.
2. Institute of Medicine, Division of Health Promotion and Disease Prevention. Report of a study. Human health risks with the subtherapeutic use of penicillin or tetracyclines in animal feed. Washington, D.C.: National Academy Press; 1998. [Google Scholar]
3. Morse S A, Johnson S J, Biddle J W, Roberts M C. High-level tetracycline resistance in Neisseria gonorrhoeae due to the acquisition of the tetM determinant. Antimicrob Agents Chemother. 1986;30:664-670.
4. Chroma M., Kolar M. Genetic methods for detection of antibiotic resistance: focus on extended-spectrum β-lactamases. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2010, 154(4): 289-296.
--->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ST26SequenceListing PUBLIC "-//WIPO//DTD Sequence Listing
1.3//EN" "ST26SequenceListing_V1_3.dtd">
<ST26SequenceListing dtdVersion="V1_3" fileName="НАБОР
ОЛИГОНУКЛЕОТИДОВ ДЛЯ ВЫЯВЛЕНИЯ ГЕНОВ УСТОЙЧИВОСТИ К ТЕТРАЦИКЛИНАМ ИЗ
ГРУППЫ tet У БАКТЕРИЙ МЕТОДОМ ПЦР С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО
ВРЕМЕНИ».xml" softwareName="WIPO Sequence" softwareVersion="2.1.2"
productionDate="2022-10-12">
<ApplicationIdentification>
<IPOfficeCode>RU</IPOfficeCode>
<ApplicationNumberText>2022118597</ApplicationNumberText>
<FilingDate>2022-07-07</FilingDate>
</ApplicationIdentification>
<ApplicantFileReference>02-10</ApplicantFileReference>
<ApplicantName languageCode="ru">Федеральное государственное
бюджетное учреждение «Всероссийский государственный Центр качества и
стандартизации лекарственных средств для животных и кормов» (ФГБУ
«ВГНКИ») (Federalnoe gosudarstvennoe biudzhetnoe uchrezhdenie
«Vserossiiskii gosudarstvennyi Tsentr kachestva i standartizatsii
lekarstvennykh sredstv dlia zhivotnykh i kormov» (FGBU «VGNKI»))
123022, Россия, Москва, Звенигородское шоссе д.5. (Rossiya, Moskva,
Zvenigorodskoye shosse d.5.)</ApplicantName>
<ApplicantNameLatin>FGBU VGNKI</ApplicantNameLatin>
<InventionTitle languageCode="ru">НАБОР ОЛИГОНУКЛЕОТИДОВ ДЛЯ
ВЫЯВЛЕНИЯ ГЕНОВ УСТОЙЧИВОСТИ К ТЕТРАЦИКЛИНАМ ИЗ ГРУППЫ tet У БАКТЕРИЙ
МЕТОДОМ ПЦР С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ»</InventionTitle>
<SequenceTotalQuantity>9</SequenceTotalQuantity>
<SequenceData sequenceIDNumber="1">
<INSDSeq>
<INSDSeq_length>22</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..22</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q1">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>cggtcttcttcatcatgcaact</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="2">
<INSDSeq>
<INSDSeq_length>23</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..23</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q2">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>gagtgaatgcagaatgccaaatg</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="3">
<INSDSeq>
<INSDSeq_length>23</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..23</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q3">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>tttcggcgaggatcgctttcact</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="4">
<INSDSeq>
<INSDSeq_length>23</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..23</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q4">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>ggtacaacgaggacggataatac</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="5">
<INSDSeq>
<INSDSeq_length>20</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q5">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>cctggcgtgtctatgatgtt</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="6">
<INSDSeq>
<INSDSeq_length>29</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..29</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q6">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>acgtcagagaggaattacaattcagacag</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="7">
<INSDSeq>
<INSDSeq_length>20</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q7">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>gagcgtagatgaaggcacaa</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="8">
<INSDSeq>
<INSDSeq_length>22</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..22</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q8">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>atggcctggcgtatctataatg</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="9">
<INSDSeq>
<INSDSeq_length>26</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..26</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>genomic DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q9">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>unidentified</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>tcactgctgtctggatagtgattccc</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
</ST26SequenceListing>
<---
название | год | авторы | номер документа |
---|---|---|---|
НАБОР СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ДЛЯ ИДЕНТИФИКАЦИИ И ДЕТЕКЦИИ ГЕНОВ qnrS и qnrB, ОБЕСПЕЧИВАЮЩИХ УСТОЙЧИВОСТЬ К ФТОРХИНОЛОНАМ БАКТЕРИЙ СЕМЕЙСТВА ENTEROBACTERIACEAE, МЕТОДОМ ПЦР С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ» И СПОСОБ ИХ ПРИМЕНЕНИЯ | 2022 |
|
RU2810576C1 |
СПОСОБ ОБНАРУЖЕНИЯ ГЕНОВ УСТОЙЧИВОСТИ К АМИНОГЛИКОЗИДАМ ИЗ ГРУППЫ aadA У БАКТЕРИЙ ЖИВОТНОГО ПРОИСХОЖДЕНИЯ МЕТОДОМ ПЦР С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ» | 2023 |
|
RU2816522C1 |
НАБОР ОЛИГОНУКЛЕОТИДОВ ДЛЯ ВЫЯВЛЕНИЯ ДНК ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННОГО АТЛАНТИЧЕСКОГО ЛОСОСЯ МЕТОДОМ ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ | 2023 |
|
RU2808662C1 |
Тест-система и способ обнаружения специфических фрагментов нуклеиновых кислот 16 патогенов с использованием изотермической реакции амплификации | 2023 |
|
RU2810751C1 |
Способ преимплантационного генетического тестирования ахондроплазии | 2022 |
|
RU2795482C1 |
Способ диагностики инвазивного кандидоза и видовой идентификации его основных возбудителей методом ПЦР с гибридизационно-флуоресцентной детекцией в режиме реального времени | 2022 |
|
RU2809386C1 |
Способ выявления возбудителей респираторных инфекций крупного рогатого скота: BPIV, BRSV, BHV-4, BCoV, BVDV-1, BVDV-2, BVDV-3, на основе мультиплексной полимеразной цепной реакции (ПЦР) | 2022 |
|
RU2798286C1 |
Способ преимплантационного генетического тестирования синдрома Альпорта | 2022 |
|
RU2795481C1 |
Олигонуклеотидные праймеры и зонд для выявления фрагмента гена 23S рРНК бактерий семейства Enterococcaceae | 2023 |
|
RU2824466C1 |
Способ преимплантационного генетического тестирования синдрома Мартина-Белл | 2022 |
|
RU2796834C1 |
Изобретение относится к биотехнологии и представляет собой набор олигонуклеотидов для идентификации и детекции участков генов tetA, tetM, tetO, обеспечивающих устойчивость к тетрациклинам у бактерий методом ПЦР в режиме «реального времени», для образцов, полученных из продовольственного сырья, пищевых продуктов, от животных, из объектов окружающей среды, без этапа выделения бактериальных изолятов, а также для чистых бактериальных культур. Набор содержит праймеры и зонды для выявления фрагментов генов резистентности к тетрациклинам tetA, tetM, tetO. 3 ил., 7 табл., 1 пр.
Набор олигонуклеотидов для идентификации и детекции участков генов tetA, tetM, tetO у бактерий, обеспечивающих устойчивость к тетрациклинам методом ПЦР в режиме реального времени, характеризующийся тем, что имеет следующий нуклеотидный состав:
1) гена устойчивости к тетрациклинам tetA:
tetA–F CGGTCTTCTTCATCATGCAACT
tetA–R GAGTGAATGCAGAATGCCAAATG
tetA–Z ROX-TTTCGGCGAGGATCGCTTTCACT-BHQ2
2) гена устойчивости к тетрациклинам tetM:
tetM – F GGTACAACGAGGACGGATAATAC
tetM – R CCTGGCGTGTCTATGATGTT
tetM – Z ROX–ACGTCAGAGAGGAATTACAATTCAGACAG–BHQ2
3) гена устойчивости к тетрациклинам tetO:
tetO – F GAGCGTAGATGAAGGCACAA
tetO – R ATGGCCTGGCGTATCTATAATG
tetO – Z FAM-TCACTGCTGTCTGGATAGTGATTCCC-BHQ1
Simpson A | |||
E., Skurray R | |||
A., Firth N | |||
Аппарат для нагревания окружающей его воды | 1920 |
|
SU257A1 |
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР | 1922 |
|
SU2000A1 |
- Т | |||
Затвор для дверей холодильных камер | 1920 |
|
SU182A1 |
- No | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
- С | |||
УГЛОМЕР | 1926 |
|
SU3345A1 |
Bannam T | |||
L., Rood J | |||
I | |||
Identification of structural and functional domains of the |
Авторы
Даты
2023-04-12—Публикация
2022-07-07—Подача