Группа изобретений относится к рыбной промышленности, в частности к способам получения белковых гидролизатов, обогащенных эссенциальными микроэлементами хромом и цинком и с высоким содержанием общего азота и свободных аминокислот, в частности таурина, которые могут быть использованы в лечебно-профилактическом, спортивном питании, косметологии, в пищевой промышленности для приготовления рыбной продукции, майонеза, соусов, в аквакультуре.
Известен способ получения белкового гидролизата из мяса моллюсков (см. патент РФ № 2319409, МПК A23L1/333, A23J1/04, дата публикации 20.03.2008 г.), включающий подготовку сырья, его кислотный гидролиз соляной кислотой, нейтрализацию, упаривание, созревание и расфасовку.
В качестве ближайшего аналога принят способ получения белкового гидролиза из мяса мидий (см. патент РФ № 2017439, МПК A 23 L 1/333, A 23 J 1/04, дата публикации 12.11.1992 г.), включающий подготовку сырья, кислотный гидролиз соляной кислотой при температуре 102-105 °C в течение 16-22 часов, нейтрализацию, упаривание гидролизата и его отделение от осадка путем фильтрации.
Недостатками ближайшего аналога являются:
- продолжительность технологии, обусловленная не только длительностью гидролиза, но и выдерживанием гидролизата в течение не менее 5 сут перед отделением осадка;
- длительная обработка белковой составляющей используемого сырья при высокой температуре приводит к разрушению, рацемизации и изомеризации отдельных аминокислот, что влияет на их биологическую активность;
- обязательная нейтрализация щелочью с образованием солей (хлоридов), что приводит к повышенному содержанию поваренной соли NaCl при нейтрализации гидрооксидом натрия, негативно влияет на органолептические свойства и ограничивает применение белковых гидролизатов в лечебно-профилактическом питании, в частности для людей, использующих малосолевую и безсолевую диеты.
Задачей, на решение которой направлена заявляемая группа изобретений, является разработка способа, обеспечивающего фортификацию эссенциально важными микроэлементами хромом и цинком и отсутствие солей в готовом продукте, который существенно расширяет область применения при сокращении продолжительности и понижении температуры гидролиза.
Технический результат, проявляющийся при решении поставленной задачи, выражается в следующем:
- получение белковых гидролизатов, обогащенных хромом и цинком и с высоким содержанием общего азота и свободных аминокислот, в частности таурина, и отсутствием солей;
- разработка технологии, в которой сокращены продолжительность и температура гидролиза и расширена область применения.
Поставленная задача решается тем, что:
1). способ получения обогащенного хромом и цинком белкового гидролизата из гидробионта, включающий подготовку сырья, гидролиз, отделение жидкой фракции, нейтрализацию и упаривание отличается тем, что в качестве сырья используют измельченные мягкие ткани Mactra chinensis, гидролиз проводят анолитом рН = 3,0-3,5, получаемым из дистиллированной воды, при соотношении сырье : анолит 1 кг : 2-2,5 л, в течение 10-12 часов при температуре 80-85°С, полученный гидролизат остывает в течение 4 часов, затем его осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию, проводят нейтрализацию до рН 6,8-7,1, добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию и упаривают до содержания сухих веществ по массе не менее 25%;
2). способ получения обогащенного хромом и цинком белкового гидролизата из гидробионта, включающий подготовку сырья, гидролиз, отделение жидкой фракции, нейтрализацию и упаривание отличается тем, что в качестве сырья используют измельченные мягкие ткани Anadara broughtonii, гидролиз проводят анолитом рН = 2,5-3,0, получаемым из дистиллированной воды, при соотношении сырье : анолит 1 кг : 2-2,5 л, в течение 10-12 часов при температуре 85-90°С, полученный гидролизат остывает в течение 4 часов, затем его осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию, проводят нейтрализацию до рН 6,8-7,1, добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию и упаривают до содержания сухих веществ по массе не менее 25%;
3). способ получения обогащенного хромом и цинком белкового гидролизата из гидробионта, включающий подготовку сырья, гидролиз, отделение жидкой фракции, нейтрализацию и упаривание отличается тем, что в качестве сырья используют измельченные мягкие ткани Spisula sachalinensis, гидролиз проводят анолитом рН =2,5-3,0, получаемым из дистиллированной воды, при соотношении сырье : анолит 1 кг : 1,5-2,0 л, в течение 10-12 часов при температуре 85-90°С, полученный гидролизат остывает в течение 4 часов, затем его осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию, проводят нейтрализацию до рН 6,8-7,1, добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию и упаривают до содержания сухих веществ по массе не менее 25%.
Сопоставительный анализ признаков заявляемой группы изобретений с признаками прототипа и аналогов свидетельствует о соответствии заявляемого решения критерию «новизна».
При этом отличительные признаки формулы изобретений обеспечивают решение следующих функциональных задач.
Признаки, описывающие используемое сырье, позволяют расширить сырьевую базу для получения белковых гидролизатов, а также обуславливают высокое содержание общего азота и свободных аминокислот, в частности таурина, в готовом продукте.
Признаки, характеризующие используемый анолит, описывают тип гидролизующего агента, не требующего нейтрализации.
Признаки, касающиеся соотношения сырье : анолит, описывают оптимальное соотношение, обеспечивающее эффективный гидролиз.
Признаки, касающиеся температуры гидролиза, длительность которого составляет 10-12 часов, описывают оптимальные режимные характеристики гидролиза, при этом умеренный температурный режим позволяет уменьшить или предотвратить изомеризацию или разрушение отдельных аминокислот.
Признаки «полученный гидролизат остывает в течение 4 часов» позволяют подготовить гидролизат к дальнейшей обработке.
Признаки «полученный гидролизат… осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С» позволяют удалить взвешенные частицы.
Признаки «отделяют жидкую фракцию» позволяют выделить целевой продукт.
Признаки «проводят нейтрализацию до рН 6,8-7,1» позволяют обеспечить необходимую рН среды для взаимодействия аминокислот и пептидов с хлоридом хрома (III) и хлоридом цинка.
Признаки «[в жидкую фракцию] добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию» позволяют получить белковый гидролизат, обогащенный эссенциальными микроэлементами хромом и цинком за счет образования хелатных комплексов хрома (III) и цинка с органическими соединениями.
Признаки «упаривают жидкую фракцию до содержания сухих веществ по массе не менее 25%» позволяют удалить лишнюю влагу и получить готовый продукт.
Заявляемый способ осуществляют по стандартной технологии на стандартном оборудовании.
В качестве сырья используют мягкие ткани двустворчатых моллюсков Дальневосточного региона (Mactra chinensis, Anadara broughtonii, Spisula sachalinensis) – двигательный мускул, мантию, аддуктор. В качестве сырья также могут быть использованы и некондиционные мягкие ткани – срезанные остатки мускулов-замыкателей, мантия или ее части, другие части мышечной ткани с механическими повреждениями при технологии.
Мягкие ткани промывают в проточной воде с температурой не выше 20°С, помещают на решета для удаления излишней воды, продолжительность стекания составляет 20-30 мин.
Далее сырье измельчают до размера частиц 0,1-0,5 мм, затем дополнительно гомогенизируют.
Измельченное сырье переносят в реактор (с эмалированным или стеклянным покрытием) с анолитом с заданным уровнем рН, обеспечивая требуемое соотношение сырье : анолит.
Далее проводят гидролиз при заданной температуре в течение 10-12 часов при перемешивании каждый час в течение 5 минут.
Полученный гидролизат осветляют центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию фильтрованием и подвергают ее нейтрализации до рН 6,8-7,1.
Затем в жидкую фракцию добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию.
На заключительном этапе обогащенную хромом и цинком жидкую фракцию упаривают до содержания сухих веществ не менее 25% по массе.
Примеры осуществления способа
Пример 1
Двигательный мускул Mactra chinensis массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,5 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2 л анолита рН = 3,0. Гидролиз проводили при 80 °С в течение 12 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее Ca(OH)2 до рН = 7,0 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 20°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 27,42±0,85%, содержание общего азота 2,75±0,13%, содержание свободных аминокислот 1,3±0,03%, содержание таурина 3,3±0,1% от суммы свободных аминокислот, рН = 2,85, содержание хрома (III) – 1,2 мкг/мл, содержание цинка – 0,21 мг/мл.
Пример 2
Мантию Mactra chinensis массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,3 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2,5 л анолита рН = 3,3. Гидролиз проводили при 85°С в течение 10 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее Ca(OH)2 до рН = 6,9 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 22°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 27,50±0,73%, содержание общего азота 2,77±0,12%, содержание свободных аминокислот 1,35±0,02%, содержание таурина 3,2±0,1% от суммы свободных аминокислот, рН = 6,9, содержание хрома (III) – 1,1 мкг/мл, содержание цинка – 0,22 мг/мл.
Пример 3
Двигательный мускул и мантию Mactra chinensis массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,5 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2 л анолита рН = 3,5. Гидролиз проводили при 83°С в течение 11 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее КOH до рН = 7,0 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 25°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 26,57±0,81%, содержание общего азота 2,67±0,13%, содержание свободных аминокислот 1,4±0,03%, содержание таурина 3,28±0,1% от суммы свободных аминокислот, рН = 7,0, содержание хрома (III) – 1,2 мкг/мл, содержание цинка – 0,20 мг/мл.
Пример 4
Двигательный мускул Anadara broughtonii массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,5 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2 л анолита рН = 2,5. Гидролиз проводили при 85°С в течение 12 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее Ca(OH)2 до рН = 7,0 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 20°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 26,92±1,1%, содержание общего азота 2,85±0,11%, содержание свободных аминокислот 1,28±0,04%, содержание таурина 3,61±0,17% от суммы свободных аминокислот, рН = 7,0, содержание хрома (III) – 1,4 мкг/мл, содержание цинка – 0,22 мг/мл.
Пример 5
Мантию Anadara broughtonii массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,3 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2,5 л анолита рН = 3,0. Гидролиз проводили при 90°С в течение 10 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее Ca(OH)2 до рН = 6,9 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 22°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 28,98±1,05%, содержание общего азота 2,90±0,10%, содержание свободных аминокислот 1,33±0,03%, содержание таурина 3,03±0,15% от суммы свободных аминокислот, рН = 6,9, содержание хрома (III) – 1,3 мкг/мл, содержание цинка – 0,20 мг/мл.
Пример 6
Двигательный мускул и мантию Anadara broughtonii массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,5 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2 л анолита рН = 2,8. Гидролиз проводили при 87°С в течение 11 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее КOH до рН = 7,0 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 25°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 27,81±1,09%, содержание общего азота 2,87±0,12%, содержание свободных аминокислот 1,2±0,04%, содержание таурина 3,32±0,11% от суммы свободных аминокислот, рН = 7,0, содержание хрома (III) – 1,2 мкг/мл, содержание цинка – 0,21 мг/мл.
Пример 7
Двигательный мускул Spisula sachalinensis массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,5 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 2 л анолита рН = 2,5. Гидролиз проводили при 85 °С в течение 12 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее Ca(OH)2 до рН = 7,0 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 20°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 26,57±0,81%, содержание общего азота 2,67±0,13%, содержание свободных аминокислот 1,21±0,03%, содержание таурина 2,54±0,26% от суммы свободных аминокислот, рН = 7,0, содержание хрома (III) – 1,0 мкг/мл, содержание цинка – 0,23 мг/мл.
Пример 8
Мантию Spisula sachalinensis массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,3 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 1,5 л анолита рН = 3,0. Гидролиз проводили при 90°С в течение 10 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее Ca(OH)2 до рН = 6,9 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 22°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 25,63±0,76%, содержание общего азота 2,43±0,12%, содержание свободных аминокислот 1,19±0,04%, содержание таурина 2,89±0,13% от суммы свободных аминокислот, рН = 6,9, содержание хрома (III) – 1,1 мкг/мл, содержание цинка – 0,21 мг/мл.
Пример 9
Двигательный мускул и мантию Spisula sachalinensis массой 1 кг промывали в проточной воде с температурой не выше 20°С, помещали на решета для удаления излишней воды. Продолжительность стекания 20-30 мин.
Подготовленное сырье измельчали в электрическом куттере до гомогенной массы с размером частиц от 0,1 до 0,5 мм, затем дополнительно гомогенизировали.
Измельченное сырье помещали в стеклянную емкость, заливали 1,8 л анолита рН = 2,8. Гидролиз проводили при 87°С в течение 11 ч.
Полученный гидролизат остывал в течение 4 часов, затем его осветляли центрифугированием при 4000 об/мин в течение 10 мин при 25°С, отделяли жидкую фракцию фильтрованием, нейтрализовали ее КOH до рН = 7,0 и добавляли 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубировали при температуре 25°С в течение 60 минут, проводили нанофильтрацию, затем упаривали.
Содержание сухих веществ составляло 26,92±1,12%, содержание общего азота 2,51±0,1%, содержание свободных аминокислот 1,24±0,05%, содержание таурина 2,71±0,1% от суммы свободных аминокислот, рН = 7,0, содержание хрома (III) – 1,2 мкг/мл, содержание цинка – 0,21 мг/мл.
Авторы исследовали полученные образцы.
Готовые продукты представляли собой:
1). обогащенный хромом и цинком белковый гидролизат Mactra chinensis – темно-окрашенная жидкость с приятным запахом, рН = 6,8-7,1, содержащая сложную смесь свободных заменимых и незаменимых аминокислот, включая таурин, пептиды, а также эссенциальные микроэлементы хром и цинк;
2). обогащенный хромом белковый гидролизат Anadara broughtonii – темно-окрашенная жидкость с приятным запахом, рН = 6,8-7,1, содержащая сложную смесь свободных заменимых и незаменимых аминокислот, включая таурин, пептиды, а также эссенциальные микроэлементы хром и цинк;
3). обогащенный хромом и цинком белковый гидролизат Spisula sachalinensis – темно-окрашенная жидкость с приятным запахом, рН = 6,8-7,1, содержащая сложную смесь свободных заменимых и незаменимых аминокислот, включая таурин, пептиды, а также эссенциальные микроэлементы хром и цинк.
Органолептические характеристики обогащенных хромом и цинком белковых гидролизатов из гидробионтов приведены в таблице 1.
Таблица 1
Органолептические характеристики обогащенных хромом и цинком белковых гидролизатов из гидробионтов
Показатели безопасности обогащенных хромом и цинком белковых гидролизатов из гидробионтов представлены в таблицах 2-4.
Таблица 2
Показатели безопасности обогащенных хромом и цинком белковых гидролизатов из Mactra chinensis
не более
Таблица 3
Показатели безопасности обогащенных хромом и цинком белковых гидролизатов из Anadara broughtonii
не более
Таблица 4
Показатели безопасности обогащенных хромом и цинком белковых гидролизатов из Spisula sachalinensis
не более
Химический состав обогащенных хромом и цинком белковых гидролизатов из гидробионтов представлен в таблицах 5-7.
Таблица 5
Химический состав обогащенных хромом и цинком
белковых гидролизатов из Mactra chinensis
Таблица 6
Химический состав обогащенных хромом и цинком
белковых гидролизатов из Anadara broughtonii
Таблица 7
Химический состав обогащенных хромом и цинком
белковых гидролизатов из Spisula sachalinensis
Ценность белковых гидролизатов заключается в высоком содержании эссенциальных микроэлементов хрома и цинка, а также свободных аминокислот и пептидов, обладающих высокой биологической активностью и усвояемостью.
Аминокислотный состав обогащенных хромом и цинком белковых гидролизатов из гидробионтов представлен в таблицах 8-10.
Таблица 8
Состав и содержание свободных аминокислот
в обогащенных хромом и цинком белковых гидролизатах из Mactra chinensis
% от общей массы свободных аминокислот
Таблица 9
Состав и содержание свободных аминокислот в обогащенных хромом и цинком белковых гидролизатах из Anadara broughtonii
% от общей массы свободных аминокислот
Таблица 10
Состав и содержание свободных аминокислот в обогащенных хромом и цинком белковых гидролизатах из Spisula sachalinensis
% от общей массы свободных аминокислот
Полученные обогащенные хромом и цинком белковые гидролизаты из гидробионтов характеризуются высоким содержанием биологически активной свободной аминокислоты таурина (сульфоксиглицина), обладающей благотворным разнообразным воздействием на организм человека.
Таурин является необходимым составным компонентом в питании человека, поскольку не синтезируется в организме. Таурин участвует в процессе конъюгации желчных кислот, обладает антитоксическими и антиоксидантными свойствами, обладает способностью защищать ткани сердца от повреждений (см. Аюшин Н.Б. Таурин: фармацевтические свойства и перспективы получения из морских организмов // Известия ТИНРО-центра, 2001, Т.129. С.129-145; Chahine R., Hanna J., Aboukhalil K. Taurine and myocardial noradrenaline // Arzneimitell_Forschung Drug res. - 1994,- Vol, 441. № 2. - P. 126-128; Cozzi R., Ricordi R., Bartioni F. Taurine and ellagic acid – 2 differently-acting natural antioxidants /| Enviromental and Molec. Multiagenesssis. – 1195.- Vol.26. № 3. – P. 248-254; Kerai M. D. J., Waterfield C.J., Kenyon S.H. Taurine-protective properties against ethanol-indused hepatid steatosis and lipid peroxidation / Amino Acids. – 1986. –Vol.15. № 1-2. – P. 53-76).
Свободные аминокислоты и пептидные фракции связываются с микроэлементами хромом и цинком с образованием сложных хелатных соединений.
Эффективность связывания микроэлементов хрома и цинка с аминокислотной и пептидной матрицами белкового гидролизата подтверждается их высоким содержанием в белковом гидролизате (см. таблицы 11-13).
Таблица 11
Содержание хрома в белковых гидролизатах из Mactra chinensis
Таблица 12
Содержание хрома и цинка в белковых гидролизатах из Anadara broughtonii
Таблица 13
Содержание хрома и цинка в белковых гидролизатах из Spisula sachalinensis
Хром – жизненно важный микроэлемент, который является постоянной составной частью клеток всех органов и тканей. Основные функции хрома в организме: участвует в регуляции синтеза жиров и обмена углеводов, способствует превращению избыточного количества углеводов в жиры; входит в состав низкомолекулярного органического комплекса – фактора толерантности к глюкозе, обеспечивающего поддержание нормального уровня глюкозы в крови; вместе с инсулином действует как регулятор уровня сахара в крови, обеспечивает нормальную активность инсулина; способствует структурной целостности молекул нуклеиновых кислот; участвует в регуляции работы сердечной мышцы и функционировании кровеносных сосудов; способствует выведению из организма токсинов, солей тяжелых металлов, радионуклидов (Реутина С.В. Роль хрома в организме человека // Вестник РУДН, серия Экология и безопасность жизнедеятельности, 2009, № 4, С. 50-55).
Биоусвояемость хрома из неорганических соединений в желудочно-кишечном тракте невысока, всего 0,5-1%, однако она возрастает до 20-25% при поступлении хрома в виде комплексных соединений с органическими веществами.
Как эссенциальный микроэлемент хром нормализует проницаемость клеточных мембран для глюкозы, процессы использования ее клетками и депонирования, увеличивает чувствительность рецепторов тканей к инсулину, уменьшая потребность организма в инсулине. Дефицит приводит к снижению толерантности к глюкозе, а также повышению триглицеридов и холестерина. Влияние хрома на липидный обмен опосредуется его регулирующим влиянием на функционирование инсулина.
Уточненная физиологическая потребность для взрослых – 40 мкг/сутки (Методические рекомендации MP 2.3.1.0253-21 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 22 июля 2021 г.).
Цинк – жизненно важный микроэлемент, который играет важную роль в обменных процессах, входит в состав многих ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии генов, влияет на активность гормонов и витаминов.
Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Физиологическая потребность для взрослых – 12 мг/сутки (Методические рекомендации MP 2.3.1.0253-21 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 22 июля 2021 г.).
Цинк является эссенциальным металлом, вовлеченным в регуляцию функционирования нервной, эндокринной, иммунной, репродуктивной и других систем за счет реализации сигнальной, кофакторной, структурной функции в составе более чем 3000 ферментов и цинксодержащих металлопротеинов (см. Maret W. Regulation of Cellular Zinc Ions and Their Signaling Functions.In: Zinc Signaling. Singapore: Springer; 2019: 5-22). Нарушение обмена цинка связано с широким спектром патологий, в том числе сахарным диабетом как 1, так и 2 типа, вследствие его участия как в продукции и секреции, так и передаче сигнала инсулина (см. Maret W. Zinc in pancreatic islet biology, insulin sensitivity, and diabetes. Prev. Nutr. Food Sci. 2017; 22(1): 1-8).
Цинк является одним из наиболее важных минералов для обмена веществ, который принимает участие во многих метаболических процессах в качестве каталитического, регулирующего и структурного компонента. Он является кофактором для более чем 300 ферментов, таких как карбоангидраза, алкогольдегидрогеназа и щелочная фосфатаза, и входит в структуру 2500 факторов транскрипции (см. Liu M.J. and all Zinc deficiency augments leptin production and exacerbates macrophage infiltration into adipose tissue in mice fed a high-fat diet. J. Nutr. 2013; 143(7): 1036-1045; Tanaka S., Takahashi E., Matsui T., Yano H. Zinc promotes adipocyte differentiation in vitro. Asian-Australasian J. Animal Sci. 2001;14(7): 966-969; Pandurangan M., Veerappan M., Kim D.H. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Appl. Biochem. Biotechnol. 2015; 175(3): 1270-1280).
Дефицит цинка как микроэлемента-антиоксиданта может быть вовлечен в окисление липидов и воспаление (см. Smith U., Kahn B.B. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Int. Med.
2016; 280(5): 465-475; Ghosh C., Yang S.H., Kim J.G., Jeon T.I., Yoon B.H., Lee J.Y., Lee E.Y., Choi S.G., Hwang S.G. Zinc-chelated vitamin C stimulates adipogenesis of 3T3-L1 cells. Asian-Australasian J. Animal Sci. 2013;26(8): 1189-1196).
Изменение органолептических характеристик обогащенных хромом и цинком белковых гидролизатов из гидробионтов в процессе хранения представлено в таблице 14.
Таблица 14
Изменение органолептических показателей обогащенных хромом и цинком
белковых гидролизатов из гидробионтов в процессе хранения
Изменение показателей безопасности обогащенных хромом и цинком белковых гидролизатов из гидробионтов в процессе хранения представлено в таблицах 15-16.
Таблица 15
Изменение показателей безопасности обогащенных хромом и цинком белковых гидролизатов
из Mactra chinensis или Anadara broughtonii в процессе хранения
Таблица 16
Изменение показателей безопасности обогащенных хромом и цинком белковых гидролизатов
из Spisula sachalinensis в процессе хранения
название | год | авторы | номер документа |
---|---|---|---|
Способ получения обогащенного хромом белкового гидролизата из гидробионта (варианты) | 2023 |
|
RU2809622C1 |
Способ получения обогащенного цинком белкового гидролизата из гидробионта (варианты) | 2023 |
|
RU2809623C1 |
Способ получения белкового гидролизата из гидробионта (варианты) | 2023 |
|
RU2809601C1 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОЛИЗАТА ИЗ ДВУСТВОРЧАТОГО МОЛЛЮСКА ANADARA KAGOSHIMENSIS (ВАРИАНТЫ) | 2023 |
|
RU2819742C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНСЕРВОВ ИЗ ДВУСТВОРЧАТЫХ ЗАРЫВАЮЩИХСЯ МОЛЛЮСКОВ (КЛЕМОВ) | 2004 |
|
RU2262278C1 |
ПРОДУКТ, ОБОГАЩЕННЫЙ СВОБОДНЫМИ АМИНОКИСЛОТАМИ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2000 |
|
RU2171066C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ДВУСТВОРЧАТЫХ ЗАРЫВАЮЩИХСЯ МОЛЛЮСКОВ (КЛЕМОВ) (ВАРИАНТЫ) | 2002 |
|
RU2231272C2 |
СПОСОБ ПРОИЗВОДСТВА ФОРМОВАННЫХ ИЗДЕЛИЙ ИЗ МОРСКИХ МОЛЛЮСКОВ | 2012 |
|
RU2505240C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВЫХ БЕЛКОВЫХ ПРОДУКТОВ | 2007 |
|
RU2331202C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНСЕРВИРОВАННЫХ СУПОВ ИЗ КЛЕМОВ | 2007 |
|
RU2391877C2 |
Группа изобретений относится к биотехнологии, в частности к способам получения белковых гидролизатов. Описаны способы получения обогащенных хромом и цинком белковых гидролизатов из гидробионтов, выбранных из Mactra chinensis или Anadara broughtonii или Spisula sachalinensis, включающие подготовку сырья, гидролиз в течение 10-12 часов с использованием анолита с определенным уровнем рН, получаемым из дистиллированной воды, отделение жидкой фракции, нейтрализацию, внесение водного раствора хлорида хрома (III) и водного раствора хлорида цинка, инкубирование при температуре 20-25°С в течение 60 минут, нанофильтрацию и упаривание до содержания сухих веществ по массе не менее 25%. Способы позволяют получить продукты, обогащенные хромом и цинком, с высоким содержанием общего азота и свободных аминокислот и отсутствием солей, а также сократить продолжительность и температуру гидролиза. 3 н.п. ф-лы, 16 табл., 9 пр.
1. Способ получения обогащенного хромом и цинком белкового гидролизата из гидробионта, включающий подготовку сырья, гидролиз, отделение жидкой фракции, нейтрализацию и упаривание, отличающийся тем, что в качестве сырья используют измельченные мягкие ткани Mactra chinensis, гидролиз проводят анолитом рН = 3,0-3,5, получаемым из дистиллированной воды, при соотношении сырье : анолит 1 кг : 2-2,5 л, в течение 10-12 часов при температуре 80-85°С, полученный гидролизат остывает в течение 4 часов, затем его осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию, проводят нейтрализацию до рН 6,8-7,1, добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию и упаривают до содержания сухих веществ по массе не менее 25%.
2. Способ получения обогащенного хромом и цинком белкового гидролизата из гидробионта, включающий подготовку сырья, гидролиз, отделение жидкой фракции, нейтрализацию и упаривание, отличающийся тем, что в качестве сырья используют измельченные мягкие ткани Anadara broughtonii, гидролиз проводят анолитом рН = 2,5-3,0, получаемым из дистиллированной воды, при соотношении сырье : анолит 1 кг : 2-2,5 л, в течение 10-12 часов при температуре 85-90°С, полученный гидролизат остывает в течение 4 часов, затем его осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию, проводят нейтрализацию до рН 6,8-7,1, добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию и упаривают до содержания сухих веществ по массе не менее 25%.
3. Способ получения обогащенного хромом и цинком белкового гидролизата из гидробионта, включающий подготовку сырья, гидролиз, отделение жидкой фракции, нейтрализацию и упаривание, отличающийся тем, что в качестве сырья используют измельченные мягкие ткани Spisula sachalinensis, гидролиз проводят анолитом рН =2,5-3,0, получаемым из дистиллированной воды, при соотношении сырье : анолит 1 кг : 1,5-2,0 л, в течение 10-12 часов при температуре 85-90°С, полученный гидролизат остывает в течение 4 часов, затем его осветляют центрифугированием со скоростью 4000 об/мин в течение 10 мин при 25°С, отделяют жидкую фракцию, проводят нейтрализацию до рН 6,8-7,1, добавляют 10%-ный водный раствор хлорида хрома (III) при соотношении по массе 6,25 × азот в жидкой фракции : хлорид хрома (III) = 20:1 и 20%-ный водный раствор хлорида цинка при соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1, инкубируют при температуре 20-25°С в течение 60 минут, проводят нанофильтрацию и упаривают до содержания сухих веществ по массе не менее 25%.
СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОЙ БЕЛКОМ КОМПОЗИЦИИ ИЗ МЫШЕЧНОЙ ТКАНИ ЖИВОТНЫХ И ОБОГАЩЕННАЯ БЕЛКОМ КОМПОЗИЦИЯ | 1997 |
|
RU2252601C2 |
СПОСОБ ПОЛУЧЕНИЯ БЕЛКОВОГО ГИДРОЛИЗАТА ИЗ МЯСА МОЛЛЮСКОВ | 2006 |
|
RU2319409C2 |
Способ получения белкового гидролизата из гидробионтов | 1989 |
|
SU1687213A1 |
CN 104829501 А, 12.08.2015 | |||
ТАБАКАЕВА О.В | |||
Кислотные гидролизаты из отходов переработки двухстворчатых моллюсков дальневосточного региона, Техника и технология пищевых производств, 2009, N 2 (13), C.27-30 | |||
ТАБАКАЕВА О.В | |||
и др | |||
Особенности белков двустворчатого |
Авторы
Даты
2023-12-13—Публикация
2023-02-02—Подача