Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа Российский патент 2024 года по МПК G01N33/497 A61B10/00 

Описание патента на изобретение RU2818156C1

Изобретение относится к медицине, а именно к эпидемиологии и медицинской микробиологии, и может быть использовано для отбора проб для микробиологического исследования аэрозолей, формирующихся во время вскрытия трупов над легкими, с признаками COVID-19-ассоциированной пневмонии, с последующим определением возбудителя коронавирусной инфекции 2019 года (COVID-19).

Для определения рисков заражения медицинских работников, участвующих в исследовании трупов, возбудителем вируса, в том числе и вируса COVID-19 (SARS-CoV-2), необходимо знать жизнеспособность вируса и возможность передачи от умершего человека [O'KeeffeJ. Fieldinquiry: COVID-19 risksfromhandlingthedeceased // Vancouver, ВС: NationalCollaboratingCentreforEnvironmentalHealth. - 2021]. Решение этих задач осуществляется исследованием проб, как биологического материала, так и проб воздуха и смывов с объектов производственной среды в помещениях, где производится вскрытие трупа с диагнозом COVID-19.

Традиционно пробы воздуха отбирают аспирационным методом с помощью аппаратов и устройств (импакторов), которые прокачивают воздух помещения, принудительно осаживая микроорганизмы и прочие частицы, содержащиеся в воздушной среде [МУК 4.2.2942-11. Методы санитарно-бактериологических исследований объектов окружающей среды, воздуха и контроля стерильности в лечебных организациях: Методические указания. - М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2011. - 12 с.; патент RU№117183 U1, опубликованный 20.06.2012 г.]. Полученные пробы исследуют на основные показатели: общее количество микроорганизмов в 1 м3 воздуха (КОЕ/м3), количество колоний S. aureus в 1 м3 воздуха (КОЕ/м3), количество плесневых и дрожжевых грибов в 1 м3 воздуха. Данный способ подходит и для отбора проб для определения вирусной контаминации воздуха, в том числе и возбудителем COVID-19 [патент RU №2619179 С1, опубликованный 12.05.2017 г.; Lednicky J.A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients //International Journal of Infectious Diseases. -2020. - T. 100. - C. 476-482].

Недостатком отбора проб воздуха аспирационным методом является то, что требуется импактор - устройство для принудительного осаждения микроорганизмов, находящихся в воздухе. Также при индикации SARS-CoV-2 в отобранных пробах могут быть не достоверные результаты, связано это с присутствием в воздухе различных посторонних компонентов микрофлоры, отдельные фрагменты генетического материала, в том числе и самого возбудителя COVID-19. Основным недостатком данного способа является то, что не позволяет оценить содержится ли вирус в формирующемся аэрозоле во время вскрытия или присутствовал в окружающем воздухе или на объектах производственной среды до его начала.

Наиболее близким является Способ отбора проб с поверхностей различных объектов методом смывов, содержащий взятие смыва, которое производят стерильным тампоном с наконечником, предварительно смоченным вирусной транспортной средой, смыв погружают в емкость, содержащую вирусную транспортную среду, при этом смыв забирают с поверхности предмета, а емкость со смывом плотно закрывают и отправляют в лабораторию для исследования [МУК 4.2.2942-11. Методы санитарно-бактериологических исследований объектов окружающей среды, воздуха и контроля стерильности в лечебных организациях: Методические указания. - М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2011. - 12 с.].

Данный способ широко используется для отбора проб с различных поверхностей для исследования на SARS-CoV-2 [Золин В.В. и др. Оценка жизнеспособности коронавируса SARS-CoV-2 на различных типах тест-поверхностей, а также в питьевой и морской воде //Проблемы особо опасных инфекций. - 2021. - №. 2. - С.108-113; Stability of SARS-CoV-2 in different environmental conditions / A. W. H. Chin, J. T.S. Chu, M. R. A. Perera, et al. // Lancet Microbe. - 2020. - Vol.1, №1. - P. e10; Marcenac P. et al. Detection of SARS-CoV-2 on Surfaces in Households of Persons with COVID-19 // International Journal of Environmental Research and Public Health. - 2021. - T. 18. - №. 15. - C. 8184; Организация отбора смывов с объектов окружающей среды в очагах новой коронавирусной инфекции (COVID-19). Методическое письмо - Урало-Сибирский научно-методический центр по профилактике ИСМПЕНИИВИ ФБУНГНЦВБ «Вектор» Роспотребнадзора от 25.05.2020 г. - 10 с.; MP 3.1.0196-20. 3.1. Профилактика инфекционных болезней. Выявление возбудителя COVID-19 в образцах внешней среды. Методические рекомендации (утв. Главным государственным санитарным врачом РФ 23.06.2020)].

Как и у аспирационного способа, недостатком способа отбора проб методом смывов, является то, что он не позволяет оценить наличие вируса, в том числе и вируса SARS-CoV-2 в аэрозоле, формирующемся во время вскрытия трупа при исследовании легких, так как смыв берется с поверхности объекта, на которую в процессе вскрытия могут попадать биологические жидкости, содержащие вирус [WiddersA., BroomA., BroomJ. SARS-CoV-2: Theviralsheddingvsinfectivitydilemma // Infection, disease&health. - 2020. - T. 25. - №. 3. - C. 210-215; Wang W. et al. Detection of SARS-CoV-2 in different types of clinical specimens //Jama. - 2020. - T. 323. - №. 18. - C. 1843-1844; Baek M. S. et al. Detection of severe acute respiratory syndrome coronavirus 2 in the pleural fluid //Infection & Chemotherapy. - 2021. - Т. 53. - №.3. - C. 578.].

Техническим результатом заявляемого способа является повышение эффективности микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, обеспечивая возможность отбора проб аэрозоля, формирующегося над легкими с признаками COVID-19-ассоциированной пневмонии, во время их исследования, без применения специальных приборов и устройств.

Поставленный технический результат достигается тем, что, что Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, включает в себя взятие смыва, которое производят стерильным тампоном с наконечником, предварительно смоченным вирусной транспортной средой, смыв погружают в емкость, содержащую вирусную транспортную среду, при этом смыв забирают с поверхности предмета, емкость плотно закрывают и отправляют в лабораторию для исследования, предмет представляет собой предметное стекло, которое располагают одной из своих поверхностей над легким с разрезом, фиксируют его на расстоянии от легкого с разрезом обеспечивающим отбор пробы в аэрозоле, и выдерживают предметное стекло в этом положении в течение времени, обеспечивающим отбор пробы в аэрозоле, затем производят смыв тампоном с наконечником, снабженным стержнем, путем проведения наконечником по контактной поверхности предметного стекла с надавливанием и вращением, после чего наконечник отламывают от стержня тампона и помещают в емкость с вирусной транспортной средой, при этом в качестве стерильного тампона с наконечником, снабженного стержнем, используют тампон с пластиковым стержнем и синтетическим наконечником, а в качестве вирусной транспортной среды используют вирусную транспортную среду ТПС1Ков.

Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, осуществляют следующим образом.

Осуществляют исследования трупа умершего, в процессе которого были обнаружены признаки вирусной пневмонии: легкие неравномерно плотные на ощупь, тусклые с поверхностей. После чего во время исследования легких стандартными разрезами, также были обнаружены признаки пневмонии (ткань легких пониженного воздухонаполнения). Параллельно исследованию легких и вируса SARS-CoV-2, осуществляют отбор проб в аэрозоле, формирующемся во время вскрытия трупа.

Отбор пробы аэрозоля включает в себя взятие смыва, которое производят стерильным тампоном с наконечником, предварительно смоченным вирусной транспортной средой.

Смыв забирают с контактной поверхности предмета, представляющего собой предметное стекло. Предметное стекло располагают одной из своих поверхностей - контактной поверхностью над исследуемым органом в виде легкого с разрезом, затем предметное стекло фиксируют на расстоянии от исследуемого органа, обеспечивающим отбор пробы в аэрозоле, например, 20-25 см, ручным, например, рукой оператора, совершающего отбор пробы, или иным способом.

Выдерживают предметное стекло в этом положении, а именно, на расстоянии от исследуемого органа, в течение времени, обеспечивающим отбор пробы в аэрозоле, например, 0,5-1 минуты.

Взятие смыва производят стерильным тампоном с наконечником, снабженным стержнем, с контактной поверхности предметного стекла.

Смыв тампоном с наконечником, снабженным стержнем, осуществляют путем проведения наконечником по контактной поверхности предметного стекла с надавливанием и вращением, после чего наконечник отламывается от стержня и погружают в емкость, содержащую вирусную транспортную среду, например, с 1-3 мл вирусной транспортной среды, после чего емкость плотно закрывают и отправляют в лабораторию для дальнейшего микробиологического исследования.

Емкость представляет собой, например, флакон, пробирку с вирусной транспортной среды.

Вирусная транспортная среда представляет собой, например, вирусную транспортную среду ТПСЛКов.

Примеры практического применения:

Во время вскрытия 16 трупов, доставленных из медицинских учреждений с подтвержденным диагнозом COVID-19, для отбора проб для микробиологического исследования аэрозоля, формирующегося над исследующим органом: над легкими во время вскрытия для чего используют предметное стекло с размерами 26×76×2 мм, производство ООО «МиниЛаб», г. Дятьково, Брянская область, Россия, которое одной из поверхностей располагают над легким с разрезом во время их исследования методом стандартных разрезов. Предметное стекло фиксируют рукой специалиста на расстоянии 20 см от легкого с разрезом в течение 1 минуты, затем с контактной поверхности предметного стекла, обращенной к легкому с разрезом, производят смыв универсальным одноразовым стерильным зонд-тампоном тип А, производство ООО «Медицинские изделия», г. Казань, Республика Татарстан, Россия. Смыв производят путем проведения по контактной поверхности предметного стекла с надавливанием и вращением синтетическим наконечником, предварительно тщательно смоченным вирусной транспортной средой, после чего синтетический наконечник отламывают от стержня тампона и помещают в пробирку с 1 мл вирусной транспортной среды ТПС1Ков, производство ООО «РУССЭЛЛ» г. Нижний Новгород, Нижегородская область, Россия, плотно закрывают, помещают в пакет с замком (ziplock) 50×70 мм 20 мкм, производство ООО «Пакет Маркет», г. Павловск, г. Санкт-Петербург, Россия, и отправляют в лабораторию для дальнейшего выявления вирусов посредством выявления нуклеиновых кислот (РНК SARS-CoV-2) методом полимеразной цепной реакции (ПЦР). В результате микробиологического исследования взятых проб аэрозоля, формирующегося над легким с разрезом во время вскрытия, в 13 пробах обнаружена РНК SARS-CoV-2, что составило 81,3% от всех исследованных проб. Во всех 13 случаях, в которых пробы на наличие РНК SARS-CoV-2 были положительные, наблюдалось поражение легких в виде COVID-19-ассоциированной пневмонии. Идентификация РНК SARS-CoV-2 в отобранных пробах, во время вскрытия данных трупов, составила 100%. В остальных 3 случаях вскрытий умерших, с подтвержденным COVID-19, поражения легких в виде COVID-19-ассоциированной пневмонии не наблюдалось. В пробах, отобранных во время вскрытия этих 3 трупов, РНК SARS-CoV-2 не определялась. Пример №1.

Труп умершего Г., мужского пола, 65 лет, доставлен из медицинского учреждения с диагнозом «COVID-19», последний положительный результат ПЦР мазка из носа на обнаружение РНК SARS-CoV-2 от 08.04.2022 г., смерть наступила 09.04.2022 г., с момента поступления в стационар до момента наступления смерти прошло 5 койко-дней. 11.04.2022 г. произвели исследование трупа умершего Г., в процессе которого были обнаружены признаки COVID-19-ассоциированной пневмонии: легкие неравномерно плотные на ощупь, тусклые с поверхностей.

После чего во время исследования легких стандартными разрезами, также были обнаружены признаки пневмонии (ткань легких пониженного воздухонаполнения), параллельно исследованию легких, осуществили отбор проб аэрозоля, формирующегося над легким с разрезом, выше заявленным способом.

Отобранная проба направлена в лабораторию для микробиологического исследования.

В результате исследования методом ПЦР обнаружена РНК SARS-CoV-2.

Пример №2.

Труп умершей К., женского пола, 80 лет, доставлен из медицинского учреждения с диагнозом «COVID-19», последний положительный результат ПЦР мазка из носа на обнаружение РНК SARS-CoV-2 от 10.04.2022 г., смерть наступила 10.04.2022 г., с момента поступления в стационар до момента наступления смерти прошло 24 койко-дня. 11.04.2022 г. произвели исследование трупа умершей К.

Легкие при осмотре без признаков COVID-19-ассоциированной пневмонии: эластичные на ощупь, блестящие с поверхностей. Во время исследования легких стандартными разрезами признаков пневмонии также не обнаружено.

Исследуя легкие с разрезами, осуществили отбор проб аэрозоля, формирующегося над легкими, выше заявленным способом.

Отобранная проба направлена в лабораторию для микробиологического исследования.

В результате исследования методом ПЦР РНК SARS-CoV-2 не обнаружена.

Таким образом предлагаемый Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, повышает эффективность микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, обеспечивая возможность отбора проб аэрозоля, формирующегося над легкими с признаками COVID-19-ассоциированной пневмонии, во время их исследования, без применения специальных приборов и устройств, кроме того прост в применении и не требует больших материальных затрат при определении РНК SARS-CoV-2 в формирующемся аэрозоле над легкими во время вскрытия умерших с COVID-19-ассоциированной пневмонией.

Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, обеспечивает точность определения в нем возбудителя коронавирусной инфекции 2019 года (COVID-19) и точность определения рисков заражения медицинских работников, участвующих в исследовании трупов, также заявленный Способ является экономически выгодным, так как все используемые материалы легкодоступны, а сам процесс не требует использования дорогостоящего оборудования и сложных технических решений.

Похожие патенты RU2818156C1

название год авторы номер документа
СРЕДСТВО СПЕЦИФИЧЕСКОЙ ПРОФИЛАКТИКИ COVID-19 ДЛЯ ПЛОТОЯДНЫХ ЖИВОТНЫХ 2021
  • Галкина Татьяна Сергеевна
  • Нестеров Александр Александрович
  • Долгов Дмитрий Львович
  • Шатохина Ирина Викторовна
  • Кононов Александр Владимирович
  • Чвала Илья Александрович
  • Лебедев Никита Викторович
  • Ковальчук Алексей Валерьевич
  • Борисевич Сергей Владимирович
RU2768749C1
Набор реагентов для выявления РНК вируса SARS-CoV-2, возбудителя нового коронавирусного заболевания COVID-2019, методом обратной транскрипции-полимеразной цепной реакции в реальном времени 2020
  • Алексеев Яков Игоревич
  • Борисевич Сергей Владимирович
  • Варламов Дмитрий Александрович
  • Казанцев Алексей Васильевич
  • Карулина Наталья Васильевна
  • Кириллов Игорь Анатольевич
  • Кириллова Светлана Леонидовна
  • Кузубов Алексей Владимирович
  • Кутаев Дмитрий Анатольевич
  • Лебедев Виталий Николаевич
  • Маношкин Александр Владимирович
  • Мельников Денис Геннадьевич
  • Павельев Дмитрий Игоревич
  • Петров Александр Анатольевич
  • Сизикова Татьяна Евгеньевна
  • Хмуренко Степан Никитович
  • Целиков Евгений Михайлович
  • Чухраля Олег Васильевич
RU2732608C1
Пептидные иммуногены и вакцинная композиция против коронавирусной инфекции COVID-19 с использованием пептидных иммуногенов 2020
  • Рыжиков Александр Борисович
  • Рыжиков Евгений Александрович
  • Богрянцева Марина Поликарповна
  • Гаврилова Елена Васильевна
  • Даниленко Елена Дмитриевна
  • Иматдинов Ильназ Рамисович
  • Максютов Ринат Амирович
  • Нечаева Елена Августовна
  • Попова Анна Юрьевна
  • Пьянков Олег Викторович
  • Пьянкова Ольга Григорьевна
  • Суслопаров Иван Михайлович
RU2743593C1
Пептидные иммуногены, используемые в качестве компонентов вакцинной композиции против коронавирусной инфекции COVID-19 2020
  • Рыжиков Александр Борисович
  • Рыжиков Евгений Александрович
  • Богрянцева Марина Поликарповна
  • Гаврилова Елена Васильевна
  • Даниленко Елена Дмитриевна
  • Иматдинов Ильназ Рамисович
  • Максютов Ринат Амирович
  • Нечаева Елена Августовна
  • Попова Анна Юрьевна
  • Пьянков Олег Викторович
  • Пьянкова Ольга Григорьевна
  • Суслопаров Иван Михайлович
RU2743594C1
Вакцинная композиция против коронавирусной инфекции COVID-19 2020
  • Рыжиков Александр Борисович
  • Рыжиков Евгений Александрович
  • Богрянцева Марина Поликарповна
  • Гаврилова Елена Васильевна
  • Даниленко Елена Дмитриевна
  • Иматдинов Ильназ Рамисович
  • Максютов Ринат Амирович
  • Нечаева Елена Августовна
  • Попова Анна Юрьевна
  • Пьянков Олег Викторович
  • Пьянкова Ольга Григорьевна
  • Суслопаров Иван Михайлович
RU2743595C1
Пептидные иммуногены и вакцинная композиция против коронавирусной инфекции COVID-19 с использованием пептидных иммуногенов 2020
  • Рыжиков Александр Борисович
  • Рыжиков Евгений Александрович
  • Богрянцева Марина Поликарповна
  • Гаврилова Елена Васильевна
  • Даниленко Елена Дмитриевна
  • Иматдинов Ильназ Рамисович
  • Максютов Ринат Амирович
  • Нечаева Елена Августовна
  • Попова Анна Юрьевна
  • Пьянков Олег Викторович
  • Пьянкова Ольга Григорьевна
  • Суслопаров Иван Михайлович
RU2738081C1
Способ профилактического лечения коронавирусной инфекции 2020
  • Никонов Сергей Данилович
  • Воевода Михаил Иванович
  • Майоров Александр Петрович
  • Пасман Наталья Михайловна
  • Гельфонд Марк Львович
RU2777462C2
СПОСОБ ПОЛУЧЕНИЯ ИНАКТИВИРОВАННОЙ ВАКЦИНЫ ПРОТИВ COVID-19 И ВАКЦИНА, ПОЛУЧЕННАЯ СПОСОБОМ 2023
  • Игнатьев Василий Геннадьевич
  • Колышкин Владимир Михайлович
  • Гузов Евгений Алексеевич
  • Байзигитов Данил Равилевич
  • Васильев Юрий Михайлович
  • Исеркапов Артём Вакилевич
  • Кузнецов Владислав Игоревич
  • Увицкий Андрей Юрьевич
  • Моисеев Александр Александрович
  • Борисевич Сергей Владимирович
  • Кутаев Дмитрий Анатольевич
  • Ковальчук Алексей Валерьевич
  • Сыромятникова Светлана Ивановна
  • Суровяткин Алексей Васильевич
  • Мищенко Оксана Александровна
  • Рубцов Владимир Васильевич
  • Рождественский Евгений Всеволодович
  • Хмелев Алексей Леонидович
  • Мельников Сергей Алексеевич
  • Черникова Наталья Константиновна
RU2810740C1
Противо-SARS-CoV-2 вирусное средство Антипровир 2020
  • Иващенко Александр Васильевич
  • Иващенко Андрей Александрович
  • Савчук Николай Филиппович
  • Иващенко Алёна Александровна
  • Логинов Владимир Григорьевич
  • Топр Михаил
RU2738885C1
Противо-SARS-CoV-2 вирусная фармацевтическая композиция и ее применение 2020
  • Иващенко Андрей Александрович
  • Иващенко Александр Васильевич
  • Савчук Николай Филиппович
  • Иващенко Алёна Александровна
  • Ильин Алексей Петрович
  • Кравченко Дмитрий Владимирович
  • Папазова Наталья Александровна
  • Ситдеков Тагир Алиевич
RU2764444C1

Реферат патента 2024 года Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа

Изобретение относится к медицине, а именно к лабораторной диагностике и инфектологии. Осуществляют отбор проб аэрозоля, формирующегося над легкими с признаками COVID-19 ассоциированной пневмонии, для этого располагают предметное стекло над разрезом легкого и фиксируют предметное стекло на расстоянии 20-25 см от разреза легкого, выдерживают предметное стекло в этом положении в течение 0,5-1 минуты. Затем производят смыв стерильным тампоном с наконечником, снабженным стержнем, путем проведения наконечником по поверхности предметного стекла с надавливанием и вращением, после чего наконечник отламывают от стержня тампона и помещают в емкость с вирусной транспортной средой для микробиологического исследования. В частном случае в качестве стерильного тампона с наконечником, снабженным стержнем, используют тампон с пластиковым стержнем и синтетическим наконечником. В частном случае в качестве вирусной транспортной среды используют вирусную транспортную среду ТПС1Ков. Способ позволяет оценить, содержится ли вирус в формирующемся аэрозоле во время вскрытия трупа или присутствует в окружающем воздухе на объектах производственной среды. 2 з.п. ф-лы, 2 пр.

Формула изобретения RU 2 818 156 C1

1. Способ отбора проб для микробиологического исследования аэрозоля, формирующегося над легкими во время вскрытия трупа, включающий взятие смыва, которое производят стерильным тампоном с наконечником, предварительно смоченным вирусной транспортной средой, смыв погружают в емкость, содержащую вирусную транспортную среду, емкость закрывают и отправляют в лабораторию для исследования,

отличающийся тем, что

осуществляют отбор проб аэрозоля, формирующегося над легкими с признаками COVID-19-ассоциированной пневмонии, для этого располагают предметное стекло над разрезом легкого и фиксируют его на расстоянии 20-25 см от разреза легкого, выдерживают предметное стекло в этом положении в течение 0,5-1 минуты, затем производят смыв стерильным тампоном с наконечником, снабженным стержнем, путем проведения наконечником по поверхности предметного стекла с надавливанием и вращением, после чего наконечник отламывают от стержня тампона и помещают в емкость с вирусной транспортной средой для микробиологического исследования.

2. Способ по п. 1, отличающийся тем, что в качестве стерильного тампона с наконечником, снабженного стержнем, используют тампон с пластиковым стержнем и синтетическим наконечником.

3. Способ по п. 1, отличающийся тем, что в качестве вирусной транспортной среды используют вирусную транспортную среду ТПС1Ков.

Документы, цитированные в отчете о поиске Патент 2024 года RU2818156C1

Loibner, Martina et al., Biosafety Requirements for Autopsies of Patients with COVID-19: Example of a BSL-3 Autopsy Facility Designed for Highly Pathogenic Agents
Pathobiology, 2020, 1-9
СПОСОБ ПОСМЕРТНОЙ ДИАГНОСТИКИ ВРОЖДЕННОЙ ПНЕВМОНИИ У НОВОРОЖДЕННОГО 2016
  • Туманова Ульяна Николаевна
  • Ляпин Вячеслав Михайлович
  • Быченко Владимир Геннадьевич
  • Воеводин Сергей Михайлович
  • Щеголев Александр Иванович
RU2609462C1
СПОСОБ ПРОБОПОДГОТОВКИ ДЛЯ УСКОРЕННОЙ ИДЕНТИФИКАЦИИ МИКРООРГАНИЗМОВ ИЗ ПОЛОЖИТЕЛЬНЫХ ГЕМАТОЛОГИЧЕСКИХ КУЛЬТУР 2021
  • Халиулин Алмаз Вадимович
  • Лямин Артем Викторович
  • Гусякова Оксана Анатольевна
  • Козлов Андрей Владимирович
  • Балдина Ольга Анатольевна
RU2766185C1
Пальцев М.А
и др., Руководство по биопсийно-секционному курсу: Учебное пособие, М.: Медицина, 2002, с

RU 2 818 156 C1

Авторы

Тимофеев Роман Михайлович

Марченко Александр Николаевич

Калашников Александр Александрович

Миронов Антон Александрович

Даты

2024-04-24Публикация

2023-02-06Подача