Изобретение относится к области электрохимических устройств с твердым высокотемпературным электролитом и может быть использовано при изготовлении газодиффузионных электродов для источников тока (топливных элементов), систем жизнеобеспечения, для регенерации газов в замкнутых объемах, электролизеров для водородной энергетики, кислородных насосов, датчиков для метрологии и т.д.
Известны способы обработки электродов газами с целью получения определенных структур окислов, например, никелевого электрода для создания гидроокиси никеля (Пат. США №4064332, опубл. 20.12.77).
Полученные этим способом электроды могут работать только при низких температурах, т.к. гидроокись разлагается, еще не достигнув рабочей температуры высокотемпературных электрохимических устройств (800-1100°C).
Наиболее близким техническим решением (прототипом) является способ изготовления электрода с высокими удельными характеристиками путем пропитки высокопористой основы (например, платиновой) насыщенным раствором соли нитрат церий-аммония Ce(NH4)(NO3) с последующей прокалкой в процессе нагревания электрохимического устройства на воздухе до рабочей температуры (А.С. СССР № 1840850).
Полученные этим способом электроды обладают следующими недостатками. После разложения соли нитрат церий-аммония в металлической основе остается меньше 45% вещества в виде окиси церия. Такое незначительное количество окиси церия не позволяет получить максимальных удельных характеристик электродов. Пропитывание с последующей прокалкой приходится проводить многократно, что усложняет технологию изготовления электродов. Поскольку рабочие температуры устройств выше температуры прокалки, в процессе работы наблюдается спекание, уплотнение окиси церия, что приводит к снижению удельных характеристик электродов и нестабильности их во времени. Причем, чем выше рабочая температура, тем быстрее наступает ухудшение характеристик.
Целью настоящего изобретения является способ изготовления электродов с высокими удельными характеристиками, которые остаются стабильными при увеличении срока службы в несколько раз.
Указанная цель достигается благодаря пропитыванию металлической основы электрода насыщенным водным раствором хлористого церия, после разложения которого в основе остается порядка 77% вещества в виде окиси церия. Последняя спекается до образования устойчивой микроструктуры, которая затем подвергается разрушению путем резкого изменения парциального давления кислорода в газовой фазе над окислом.
Предварительно сформированную высокопористую основу платинового электрода, припеченную к твердому электролиту 0,92ZrO2 + 0,1Se2O3, пропитывали насыщенным водным раствором хлористого церия квалификации "Ч". Затем производили термическое разложение и спекание окиси церия при температуре 1200-1250°C в среде воздуха в течение часа. Температура спекания на 300-400° превышает рабочую температуру электрода, благодаря этому создаются хорошие контакты окисла с металлом основы и электролитом. Кроме того, при рабочих температурах дальнейшее спекание окисла практически не наблюдается в течение длительных сроков службы. Однако полученный таким образом электрод еще не обладает высокими удельными характеристиками, т.к. окисел имеет недостаточно развитую поверхность контакта с газовой фазой. Существенное развитие ее осуществляют резким изменением парциального давления кислорода газовой среды, что приводит к растрескиванию и измельчению спеченного окисла церия внутри металлической основы электрода. Резкого изменения парциального давления кислорода достигают или сменой окружающей газовой атмосферы, например, с кислорода на водород, или пропусканием через электролит постоянного тока с быстрой сменой полярности, что приводит к нагнетанию или откачиванию кислорода из электрода. Наиболее целесообразным является комбинированное воздействие, т.к. газовую активацию можно рассматривать как более медленную и поверхностную, токовая же активация более резкая и глубинная, т.е. изменения парциального давления кислорода идут прежде всего на той трехфазовой границе, которая и обуславливает высокую эффективность проходящих реакций, высокие удельные характеристики электродов.
Использование предлагаемого способа изготовления газодиффузионного электрода для высокотемпературных электрохимических устройств с твердым электролитом позволяет получать электроды с большим содержанием в основе спеченной окиси церия, что приводит к снижению на 30÷50% поляризации электродов и к улучшению стабильности их характеристик во времени. Причем срок службы эффективно работающих электродов увеличивается в десять и более раз.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОАКТИВНАЯ МНОГОСЛОЙНАЯ ТОНКОПЛЕНОЧНАЯ КЕРАМИЧЕСКАЯ СТРУКТУРА АКТИВНОЙ ЧАСТИ ЭЛЕМЕНТОВ ТВЕРДООКСИДНЫХ УСТРОЙСТВ | 2016 |
|
RU2662227C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ В ЯЧЕЙКАХ С ТВЁРДЫМ ЭЛЕКТРОЛИТОМ | 1970 |
|
SU1840850A1 |
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДООКСИДНОГО ТОПЛИВНОГО ЭЛЕМЕНТА С ДВУХСЛОЙНЫМ НЕСУЩИМ КАТОДОМ | 2013 |
|
RU2523693C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ОДИНОЧНОГО ТВЕРДООКСИДНОГО ТОПЛИВНОГО ЭЛЕМЕНТА | 2007 |
|
RU2424604C1 |
ТРУБЧАТЫЙ ЭЛЕМЕНТ (ВАРИАНТЫ) ДЛЯ БАТАРЕЙ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ С ТОНКОСЛОЙНЫМ ТВЕРДЫМ ЭЛЕКТРОЛИТОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2005 |
|
RU2310256C2 |
ТРУБЧАТЫЙ ЭЛЕМЕНТ ЭЛЕКТРОХИМИЧЕСКОГО УСТРОЙСТВА С ТОНКОСЛОЙНЫМ ТВЕРДООКСИДНЫМ ЭЛЕКТРОЛИТОМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2625460C2 |
СПОСОБ ФОРМИРОВАНИЯ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ С МЕТАЛЛИЧЕСКОЙ ОПОРОЙ | 2014 |
|
RU2670423C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ КАЛИЕВОЙ ЭЛЕКТРОХИМИЧЕСКОЙ ЯЧЕЙКИ | 1994 |
|
RU2069358C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ ТОКА, ТОПЛИВНЫЙ ЭЛЕМЕНТ, СИСТЕМА ТОПЛИВНОГО ЭЛЕМЕНТА И СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА ДЛЯ ДАННОЙ СИСТЕМЫ | 2005 |
|
RU2298262C1 |
ТВЕРДЫЙ ОКИСНЫЙ ЭЛЕМЕНТ И СОДЕРЖАЩАЯ ЕГО БАТАРЕЯ | 2009 |
|
RU2521874C2 |
Изобретение относится к области электротехники и может быть использовано для изготовления источников тока (топливных элементов), систем жизнеобеспечения, для регенерации газов в замкнутых объемных, электролизеров для водородной энергетики, кислородных насосов, датчиков для метрологии и т.д. Техническим результатом является улучшение удельных характеристик и увеличение их стабильности во времени. В способе изготовления газодиффузионного электрода, при котором пропитывают высокопористую основу церий содержащими солями с последующим разложением их до окиси церия. Предварительно пропитанную основу прогревают до температур на 300°-400° выше рабочей температуры. После этого резко меняют парциальное давление кислорода. 2 з.п. ф-лы.
1. Способ изготовления газодиффузионного электрода, включающий пропитку высокопористой основы церийсодержащими солями с последующим разложением их до окиси церия, отличающийся тем, что, с целью улучшения удельных характеристик и увеличения их стабильности во времени, предварительно пропитанную основу нагревают до температур на 300÷400° выше рабочей, после чего резко меняют парциальное давление кислорода.
2. Способ по п.1, отличающийся тем, что в качестве церийсодержащих солей используют хлористый церий.
3. Способ по пп.1 и 2, отличающийся тем, что резкое изменение парциального давления кислорода осуществляют изменением газовой среды и полярности пропускаемого тока.
Пат | |||
США №4064333, кл | |||
Регулятор для ветряного двигателя в ветроэлектрических установках | 1921 |
|
SU136A1 |
Авторы
Даты
2013-01-20—Публикация
1979-06-11—Подача