СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА НА ОСНОВЕ МЕДИ Российский патент 1994 года по МПК B22F3/20 C22C1/05 

Описание патента на изобретение RU2015851C1

Изобретение относится к разработке сплавов на основе меди и к способу их получения методом порошковой металлургии, используемым в электротехнической промышленности в качестве электродов для контактной сварки.

Известен способ изготовления электрод-инструментов из порошков на основе меди, включающий смешивание исходных порошков, прессование, нагрев до температуры 800-900оС и выдавливание через формообразующую полость со скоростью нагружения 12-68 м/с (1).

Известный способ имеют ряд недостатков: во-первых, сравнительно низкие прочностные свойства и жаропрочность, что объясняется отсутствием дисперсионного упрочнения материла карбидом титана; во-вторых, ограниченная растворимость хрома и циркония в меди, что объясняется низкой температурой экструзии и ограниченным количеством хрома и циркония в исходном материале.

Известен способ получения сплавов медь-цирконий, или медь-цирконий - хром из распыленных порошков, включающий подготовку порошковой шихты распылением сплавов медь-цирконий, или медь-цирконий-хром, последующий нагрев в атмосфере водорода до 450оС с выдержкой в течение 10 ч, прессование и горячую экструзию в вакуумированном медном контейнере при 600-650оС с коэффициентом вытяжки 1...25 и термомеханическую обработку (2).

Недостатком известного способа являются сравнительно низкие прочностные свойства и жаропрочность, которые связаны с отсутствием дисперсионного упрочнения материала карбидом титана и ограниченной растворимостью хрома и циркония в меди, а также сложность технологического процесса (распыление сплава, восстановление порошков с выдержкой 10 ч, использование медного контейнера и вакуумирования). Малая растворимость компонентов в меди связана с низкой температурой экструзии и ограниченным содержанием хрома и циркония в исходном материале (распыленном порошке).

Целью предлагаемого технического решения является повышение прочности и жаропрочности при сохранении высокой электропроводности сплава на основе меди.

Указанная цель достигается тем, что в способе получения сплава на основе меди, при котором исходные порошки смешивают, нагревают в защитной среде, подвергают горячей экструзии с коэффициентом вытяжки λ>3 и термомеханической обработке, в состав шихты дополнительно вводят порошок карбида титана с размером частиц менее 1 мкм, при следующем соотношении компонентов шихты, мас.%: порошок хрома 0,4-1,0 порошок циркония 0,1-0,8 порошок карбида титана 0,5-1,0 порошок меди остальное, а перед экструзией шихту прессуют, нагрев производят до температуры 1000-1050оС с выдержкой в течение 2-3 ч и проводят экструзию при той же температуре.

П р и м е р. Исходными материалами служили электролитический медный порошок марки ПМС-1, порошок хрома марки ПХ1С, порошок циркония марки ПЦрК-1 и карбид титана. С целью равномерного распределения карбида титана, а следовательно, повышения жаропрочности порошка карбида титана предварительно измельчают до < 1 мкм. Кроме того, в шихту добавляют масло в количестве 0,8% от массы шихты. После соответствующей дозировки шихту смешивают в течение 6 ч.

На гидравлическом прессе осуществляют двустороннее холодное прессование брикетов диаметром 30 мм и высотой 60 мм под давлением 400 МПа до пористости 20% . Нагрев производят при температуре 1025 ± 25оС в течение 2,5 ч в среде водорода. Затем брикеты без охлаждения сразу же подвергают экструзии с коэффициентом вытяжки λ=4, что обеспечивает беспористую структуру экструдированного изделия. После механической обработки, заготовки закаливают при температуре 1025 ± 25оС с выдержкой 2,0 ч (охлаждение в воде), подвергают холодной штамповке и старению при температуре 450оС с выдержкой 5 ч.

Результаты физико-механических свойств предлагаемого материала, а также запредельные значения параметров получения и химического состава приведены в таблице 1 и 2. Из представленных данных видно, что комплекс высоких физико-механических свойств проявляется у сплава на основе меди с содержанием: хром 0,4-1,0 мас. %, циркония 0,1-0,8 мас.%, карбид титана 0,5-1,0 мас.%, медь - остальное, полученным прессованием шихты, нагревом до температуры 1000-1050оС с выдержкой в течение 2-3 ч с дальнейшей экструзией при той же температуре.

Оптимальные режимы экструзии выбраны исходя из следующих соображений.

При температурах экструзии ниже 1000оС растворимость хрома и циркония в меди сильно замедляется. Даже при выдержке 4-5 ч не обеспечивается гомогенная структура, поэтому снижаются прочностные свойства сплава (табл.1).

Верхний предел температурного интервала (1050оС) выбран на основе следующих соображений. Температуры свыше 1050оС близки к температуре солидуса (≈ 1075оС) сплава, поэтому исходя из технологического осуществления верхний предел температуры экструзии ограничивается ≈ 25оС ниже температуры плавления.

Продолжительность нагрева (спекания) ограничивалась 2-3 ч интервалом: длительный нагрев (> 3 ч) - практически не влиял на прочностные и эксплуатационные свойства сплава, короткий нагрев (< 2 ч) - не обеспечивал стабильных свойств сплава (гомогенную структуру), т.е. в структуре остаются нерастворенными хром и цирконий, которые в конечном итоге снижают прочностные свойства сплава (табл.1).

Выбранный интервал коеффициента вытяжки обосновывался остаточной пористостью (табл.1). При коэффициенте вытяжки λ<3 структура сплава менее однородная, наблюдается остаточная пористость (например, при λ=2 пористость θ=2,0-2,5%, а при λ≥3 пористость не обнаружена).

Как видно из табл. 2, добавление карбида титана до 0,5-1,0 мас.% с дисперсностью до <1 мкм дополнительно повышает жаропрочность сплава. Легирующие компоненты упрочняют предлагаемый сплав по следующему механизму: хром - растворным, цирконий - интерметаллидным, а карбид титана - дисперсионным. Атомы хрома и циркония связаны с матрицей и друг с другом, тогда как карбид титана является механической смесью и равномерно распределяется по границам частиц. В процессе экструзии частицы карбида титана измельчаются до 0,1 мкм, при этом возрастает равномерность их распределения.

Из предлагаемого сплава по предлагаемому способу изготовлена партия конструкционных деталей (электроды для контактных сварочных машин), лабораторные и заводские испытания которых показали, что они по прочностным свойствам и жаропрочностью существенно превосходят свойства электродов, изготовленных по известному способу.

Похожие патенты RU2015851C1

название год авторы номер документа
ПОРОШКОВЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1993
  • Сурикова М.А.
  • Манегин Ю.В.
RU2038401C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЖАРОПРОЧНЫХ И ЖАРОСТОЙКИХ ДИСПЕРСНО-УПРОЧНЕННЫХ ИЗДЕЛИЙ НА ОСНОВЕ МЕДИ 1997
  • Шалунов Е.П.
  • Козицын А.А.
  • Плеханов К.А.
  • Матросов А.Л.
  • Липатов Я.М.
  • Данилов Н.В.
RU2117063C1
МЕТАЛЛОКЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДНОЙ МАТРИЦЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2018
  • Каблов Евгений Николаевич
  • Гращенков Денис Вячеславович
  • Базылева Ольга Анатольевна
  • Аргинбаева Эльвира Гайсаевна
  • Купцов Роман Сергеевич
  • Ефимочкин Иван Юрьевич
RU2686831C1
СПОСОБ ИЗГОТОВЛЕНИЯ МОНОКРИСТАЛЬНЫХ ОТЛИВОК 1991
  • Миннеханов Г.Н.
  • Хлыстов Е.Н.
  • Сабуров В.П.
  • Ларионов В.Н.
RU2015833C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ВОЛОКНИСТЫХ МАТЕРИАЛОВ 1986
  • Манукян Н.В.
  • Шатворян Р.Б.
  • Агбалян С.Г.
  • Саркисян Н.К.
SU1434790A1
ЖАРОПРОЧНЫЙ КОМПОЗИЦИОННЫЙ ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Поварова Кира Борисовна
  • Дроздов Андрей Александрович
  • Скачков Олег Александрович
  • Пожаров Сергей Владимирович
  • Морозов Алексей Евгеньевич
RU2371496C1
Способ получения магнитно-мягких материалов на основе железа 1989
  • Манукян Наира Николаевна
  • Агбалян Сурен Геворкович
  • Агаян Саша Мартынович
SU1734946A1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ОСНОВЕ КВАЗИКРИСТАЛЛИЧЕСКОГО СПЛАВА СИСТЕМЫ Al-Cu-Fe 2021
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Нуралиев Фейзулла Алибаба Оглы
  • Ульянов Михаил Васильевич
RU2781329C1
Материал для дугогасительных и разрывных электрических контактов на основе меди и способ его изготовления 2021
  • Концевой Юрий Васильевич
  • Мейлах Анна Григорьевна
  • Шубин Алексей Борисович
  • Гойда Эдуард Юрьевич
RU2769344C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ МЕДИ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ 2001
  • Аксенов А.А.
  • Гершман И.С.
  • Кудашов Д.В.
  • Просвиряков А.С.
  • Портной В.К.
RU2202642C1

Иллюстрации к изобретению RU 2 015 851 C1

Реферат патента 1994 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА НА ОСНОВЕ МЕДИ

Сущность изобретения: способ включает подготовку порошковой шихты путем смешивания порошков хрома, циркония и меди с порошком карбида титана, размер частиц которого не превышает 1 мкм при следующем соотношении компонентов в шихте, мас.% : хром 0,4 - 1,0; цирконий 0,1 - 0,8; карбид титана 0,5 - 1,0; медь - остальное. Порошковую шихту прессуют, нагревают до 1000 - 1050°С, выдерживают 2 - 3 ч и экструдируют с коэффициентом вытяжки λ≥ 3 при той же температуре. 2 табл.

Формула изобретения RU 2 015 851 C1

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА НА ОСНОВЕ МЕДИ, включающий подготовку порошковой шихты, нагрев в защитной среде, экструзию с коэффициентом вытяжки λ ≥ 3 и термомеханическую обработку, отличающийся тем, что, с целью повышения прочности и жаропрочности при сохранении высокой электропроводности, в шихту дополнительно вводят порошок карбида титана с размером частиц менее 1 мкм при следующем соотношении компонентов в шихте, мас.%:
Порошок хрома 0,4 - 1,0
Порошок циркония 0,1 - 0,8
Порошок карбида титана 0,5 - 1,0
Порошок меди Остальное
а перед экструзией шихту прессуют, нагрев проводят до 1000 - 1050oС с выдержкой в течение 2 - 3 ч и проводят экструзию при той же температуре.

Документы, цитированные в отчете о поиске Патент 1994 года RU2015851C1

"Получение сплавов меди - цирконий и медь цирконий - хром из распыленных порошков" в журнале "Metalurgical Transactions", v3, 04, 1972, р.875.

RU 2 015 851 C1

Авторы

Манукян Н.В.

Агбалян С.Г.

Агаян С.М.

Самвелян Р.Г.

Гукасян А.Б.

Киракосян А.Н.

Даты

1994-07-15Публикация

1990-05-14Подача