ДИСПЕРСНОУПРОЧНЕННЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ Российский патент 1994 года по МПК C22C19/05 

Описание патента на изобретение RU2016119C1

Изобретение относится к металлургии сплавов, а именно литейных жаропрочных сплавов на основе никеля, и может быть использовано для изготовления лопаток газовых турбин различного назначения, работающих в нагруженном состоянии при 1000оС и более.

Известны в металлургии сплавы, содержащие в качестве основы никель, а также хром, кобальт, углерод, алюминий, титан, молибден, вольфрам, ниобий, рений, тантал, цирконий, бор, иттрий, церий, служащие для изготовления литых лопаток газовых турбин и других деталей, работающих длительно под нагрузкой при 1000оС и более, и обладающие определенными механическими свойствами, в том числе жаропрочными.

Из описанных жаропрочных литейных сплавов на основе никеля, используемых для лопаток газовых турбин, по составу ингредиентов наиболее близок к заявляемому сплаву сплав - ЖС-32, принятый за прототип и приведенный в ТУI-92-99-88 ВИАМ, который содержит указанные ингредиенты в следующих количествах мас.%
никель основа углерод 0,13-0,18 хром 4,3-5,6 кобальт 8,0-10,0 молибден 0,8-1,4 вольфрам 7,7-9,3 рений 3,5-4,5 ниобий 1,4-1,8 тантал 3,5-4,5 алюминий 5,6-6,3 бор 0,015 церий 0,025 иттрий 0,005 цирконий 0,005
Сплав ЖС-32ВИ после получения отливок методом высокоскоростной направленной кристаллизации и последующей теpмической обработки (выдержка в вакуумной электропечи при 1230-1285oС 1-2 ч, охлаждение со скоростью 40-80о/мин; отжиг 1000-1100оС), имеет согласно данных, приведенных в сертификате, следующие свойства: продолжительность до разрушения при напряжении 300 МПА и 975оС 40 ч;
продолжительность до разрушения при напряжении 280МПА и 1000оС составляет 50 ч;
продолжительность до разрушения при напряжении 140МПА и 1100оС составляет 50 ч.

Жаропрочные свойства сплава ЖС-32 не удовлетворяют современным требованиям, связанным с условиями эксплуатации лопаток ГТД, точнее со значительным увеличением их ресурса и повышением рабочих температур.

Возможности повышения жаропрочных свойств за счет дополнительного легирования этого сплава металлическими добавками исчерпаны, так как это связано с понижением его пластических свойств, что отрицательно сказывается при монтаже ГТД и на начальных этапах их работы.

Целью данного изобретения является создание сплава, который обладал бы более высокой длительной прочностью в интервале температур 975-1100оС без существенного снижения пластических свойств.

Для достижения указанной цели в известный сплав, в состав которого входят никель и другие указанные ингредиенты, согласно изобретению дополнительно вводят от 0,1 до 3 мас.% тугоплавких мелкодисперсных частиц карбонитрида титана (диаметр частиц 0,05-0,5 мкм).

Таким образом, существенным отличием предлагаемого сплава от известных, в том числе от прототипа, является содержание в нем тугоплавких мелкодисперсных частиц карбонитрида титана, обеспечивающих существенное увеличение длительной прочности в интервале температур 975-1100оС, без заметного снижения пластичности. Такой эффект недостижим при обычном легировании сплава только металлическими добавками.

Пример осуществления изобретения.

Для получения сплава были подготовлены 4 заготовки сплава ЖС-32 массой в 2 кг каждая и 3 таблетки (спеченного) мелкодисперсного порошка карбонитрида титана (диаметр частиц 0,05-0,50 мкм), по 0,02 кг каждая.

Сплавы расплавлялись в вакуумной индукционной печи УВНК-8П при остаточном давлении 5˙ 10-3 ГПА. Технология выплавки предложенного сплава отличалась от используемой для известного сплава следующим. Перед разливкой на чистое зеркало металла присаживали таблетку спрессованных мелкодисперсных частиц карбонитрида титана и перемешивали расплав в течение 2 мин за счет действия индуктора. Затем сплав заливали в формы, изготовленные по выплавляемым моделям.

Полученные таким образом точно литые образцы, подвергнутые термической обработке (выдержка при 1250оС 1,5 ч, охлаждение со скоростью 50о/мин и отжигу при 1050оС) и последующей обработке, испытывали на длительную прочность при температурах 975, 1000, 1100оС согласно Н28ТУ146.

Результаты химического анализа и испытаний сплавов приведены в таблице.

Как видно из таблицы, длительная прочность существенно превышает эти же характеристики известного сплава.

Более высокие характеристики заявляемого сплава позволяют существенно увеличить ресурс лопаток ГТД, повысить КПД, улучшить экономические показатели их работы.

Сплав получают обычной вакуумной плавкой и литьем, что существенно упрощает технологический процесс по сравнению, например, с методами порошковой металлургии, которыми традиционно изготовляют дисперсно-упрочненные сплавы, и позволяет отливать сложные по конфигурации изделия.

Похожие патенты RU2016119C1

название год авторы номер документа
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ) 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
RU2353691C2
Литейный жаропрочный никелевый сплав с монокристальной структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2768946C1
НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2000
  • Толораия В.Н.
  • Орехов Н.Г.
  • Каблов Е.Н.
  • Чубарова Е.Н.
RU2186144C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК 2013
  • Лубенец Владимир Платонович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Кац Эдуард Лейбович
  • Кульмизев Александр Евгеньевич
  • Квасницкая Юлия Георгиевна
  • Яковлев Евгений Игоревич
RU2524515C1
Литейный жаропрочный никелевый сплав с монокристаллической структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2769330C1
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ (ВАРИАНТЫ) 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
RU2348725C2
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1978
  • Кишкин С.Т.
  • Логунов А.В.
  • Шпунт К.Я.
  • Торопов В.М.
  • Соболев Г.И.
  • Морозова С.Г.
  • Захаров А.С.
  • Степанов В.М.
  • Сидоров В.В.
  • Балашов А.П.
  • Чумаков В.А.
  • Кац Э.Л.
  • Бондаренко Ю.А.
  • Сонюшкина А.П.
  • Глезер Г.М.
  • Ларионов В.Н.
  • Напольнов А.Н.
  • Славин Ю.Т.
  • Михайлов И.А.
RU722330C
Литейный жаропрочный никелевый сплав с монокристальной структурой для лопаток газотурбинных двигателей 2024
  • Данилов Денис Викторович
  • Логунов Александр Вячеславович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Шмотин Юрий Николаевич
RU2821248C1
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1994
  • Копылов А.Г.
  • Дубровский В.А.
  • Батуев В.Н.
RU2081930C1
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1994
  • Копылов А.Г.
  • Дубровский В.А.
  • Батуев В.Н.
RU2081931C1

Иллюстрации к изобретению RU 2 016 119 C1

Реферат патента 1994 года ДИСПЕРСНОУПРОЧНЕННЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ

Дисперсно-упрочненный литейный сплав на основе никеля. Сплав содержит следующие компоненты, мас.%: кобальт 8,0 - 10,0; молибден 0,8 - 1,4; вольфрам 7,7 - 9,3; рений 3,5 - 4,5; тантал 3,5 - 4,5; ниобий 1,4 - 1,8; алюминий 5,5 - 6,3; бор 0,015; церий 0,025; иттрий 0,005; цирконий 0,005; карбонитрид титана 0,005 - 3; никель остальное. 1 табл.

Формула изобретения RU 2 016 119 C1

ДИСПЕРСНОУПРОЧНЕННЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ, содержащий хром, углерод, кобальт, молибден, вольфрам, рений, ниобий, алюминий, бор, тантал, церий, цирконий, иттрий, отличающийся тем, что он дополнительно содержит мелкодисперсные частицы карбонитрида титана при следующем соотношении компонентов, мас.%:
Углерод 0,13 - 0,18
Хром 4,3 - 5,6
Кобальт 8,0 - 10,0
Молибден 0,8 - 1,4
Вольфрам 7,7 - 9,3
Рений 3,5 - 4,5
Тантал 3,5 - 4,5
Ниобий 1,4 - 1,8
Алюминий 5,5 - 6,3
Бор 0,015
Церий 0,025
Иттрий 0,005
Цирконий 0,005
Карбонитрид титана 0,05 - 3
Никель Остальное

Документы, цитированные в отчете о поиске Патент 1994 года RU2016119C1

Коррозионные и жаропрочные стали и сплавы
Справочник по авиационным материалам
М., 1982, с.629
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 016 119 C1

Авторы

Саливон В.Н.

Казаков А.А.

Даты

1994-07-15Публикация

1992-06-15Подача