ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ Российский патент 1997 года по МПК C22C19/05 

Описание патента на изобретение RU2081930C1

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым для наплавки деталей, работающих на истирание в условиях высоких температур при воздействии значительных циклических и контактных нагрузок, например, газотурбинных двигателей (ГТД).

Известен литейный сплав на основе никеля, содержащий следующие компоненты в мас. хром 11,0-14,0, кобальт 1,0-6,0, молибден 0,5-1,4, вольфрам 3,0-4,8, титан 5,0-6,3, алюминий 4,0-5,0, ниобий 0,3-0,7, церий 0,02-0,05, железо 0,2-2,5, кальций 0,01-0,03, бор 0,01-0,2, углерод 0,1-0,16, никель - остальное. Сплав стабилен при работе в условиях относительно высоких температур при сохранении высокого уровня коррозионной стойкости. К недостаткам сплава следует отнести пониженную стойкость сплава к износу при температурах свыше 900oC.

Наиболее близким сплавом к заявляемому является литейный жаропрочный сплав ЖС26У, содержащий следующие компоненты в мас. углерод 0,12-0,18, хром 4,3-5,6, титан 0,9-1,3, алюминий 5,65-6,25, кобальт 8,0-10,0 ниобий 4,04-4,8, вольфрам 10,9-12,5, молибден 0,8-1,4, лантан 0,005-0,05, железо 1,0, гафний 0,1, бор 0,015, церий 0,025, иттрий 0,025, никель остальное (см. ТУ 1-92-177-91). Из данного сплава отливают лопатки ГТД с направленной или монокристаллической структурой, которые имеют высокие служебные свойства. Однако в процессе эксплуатации при высоких температурах (свыше 900oC) контактные поверхности деталей подвержены значительном износу, что ведет к появлению зазоров, потере натяга и, как следствие, к разбандажированию лопаток ГТД, что ведет к потере мощности двигателя.

Задачей изобретения является повышение исходной твердости сплава при работе в условиях высоких температур.

Для решения поставленной задачи известный сплав, содержащий углерод, хром, титан, алюминий, кобальт, ниобий, вольфрам, молибден, лантан, железо, гафний, бор, церий, иттрий, никель остальное дополнительно содержит тантал и рений при следующем соотношении, мас. углерод 0,12-0,18, хром 4,3-5,6, титан 0,9-1,3, алюминий 5,65-6,25, кобальт 8,0-10,0, ниобий 4,0-4,8, вольфрам 10,9-12,5, молибден 2,5-3,5, железо 0,1-1,0, лантан 0,005-0,05, гафний 0,01-0,1, бор 0,005-0,015, церий 0,005-0,025, иттрий 0,005-0,025, тантал 0615-0,35, рений 0,15-0,35, никель остальное.

Добавление к жаропрочному известному сплаву тантала и рения в заявляемых интервалах способствует измельчению зерна, повышению стойкости наплавленного металла против образования горячих трещин при сварке, увеличению твердости, жаропрочности и механической стойкости, снижению чувствительности к охрупчиванию в интервале рабочих температур.

Увеличение содержания ниобия способствует повышению твердости, жаропрочности и термической стойкости за счет упрочнения границ зерен, образования интерметаллидных и карбидных мелкодисперсных фаз.

Увеличение содержания молибдена способствует повышению стойкости наплавленного металла против образования горячих трещин при сварке. Молибден и вольфрам обладают самыми низкими коэффициентами диффузии, и поэтому они являются самыми сильными упрочнителями γ -твердого раствора (аустенитной матрицы).

Комплексное легирование предлагаемого сплава рением, танталом и ниобием способствует повышению исходной и горячей твердости, жаропрочности и термической стойкости наплавленного металла, а также стойкости против высокотемпературной фреттинг-коррозии, поскольку в сплаве образуются упрочняющие g -фазы Ni3Nb, Ni3Ta, которые в ряду упрочняющих фаз Ni3 (Al, Ti, Nb, Ta) обладают наибольшей устойчивостью от разупрочнения под воздействием высоких температур и напряжений. Кроме того, ниобий и тантал образуют в сплаве устойчивые карбиды, которые трудно разупрочняются вплоть до температур 1200-1260oC.

Предлагаемый сплав целесообразно выплавлять из чистых шихтовых материалов индукционным способом в вакууме с последующей вакуумной разливкой. Заготовку выполняют в виде прутков заливкой в керамические формы, получаемые по выплавляемым моделям. Из заготовок прутков делают пластины для наплавки на контактные поверхности бандажных полок лопаток турбины ГТД.

Для апробации сплава были выплавлены три состава, содержащие следующие компоненты в мас.

Состав 1: углерод 0612, хром 4644, титан 0,82, алюминий 5,61, кобальт 8615, ниобий 4,11, вольфрам 10,93, молибден 2,54, железо 0,41, лантат 0,008, гафний 0,011, бор 0,005, церий 0,005, иттрий 0,005, тантал 0,17, рений 0,16, никель остальное.

Состав 2: углерод 0,15, хром 4,97, титан 2,03, алюминий 5,84, кобальт 9,01, ниобий 4676, вольфрам 12,41, молибден 3,03, железо 0,54, лантан 0,026, гафний 0,052, бор 0,01, церий 0,015, иттрий 0,015, тантал 0,21, рений 0,22, никель остальное.

Состав 3: углерод 0,18, хром 5656, титан 1,21, алюминий 6,26, кобальт 9,94, ниобий 4,76, вольфрам 12641, молибден 3,45, железо 0,98, лантан 0,05, гафний 0,1, бор 0,015, церий 0,023, иттрий 0,024, тантал 0,34, рений 0,35, никель остальное.

Проводилась наплавка сплавов указанных составов на рабочие лопатки турбины из сплавов ЭИ437Б, ЖС26У, ЖС26 и ЖС6У по контактным поверхностям бандажных полок.

Наплавку проводили механизированной аргоно-дуговой сваркой с последующей механообработкой толщины наплавленного металла 0,8-1,1 мм с дозированием по времени, количеству и величине импульсов и кристаллизации наплавленного металла. Затем образцы отжигали в вакууме по режимам для лопаток турбин. В таблице 1 приведены свойства сплавов после литья и свойства наплаванного металла до и после термообработки.

Похожие патенты RU2081930C1

название год авторы номер документа
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1994
  • Копылов А.Г.
  • Дубровский В.А.
  • Батуев В.Н.
RU2081931C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ ДЕТАЛЕЙ ГОРЯЧЕГО ТРАКТА ГАЗОТУРБИННЫХ УСТАНОВОК 2013
  • Лубенец Владимир Платонович
  • Кац Эдуард Лейбович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Кузнецов Кирилл Юрьевич
  • Дуб Владимир Алексеевич
  • Яковлев Евгений Игоревич
  • Виноградов Александр Иванович
  • Берестевич Артур Иванович
  • Копин Павел Александрович
  • Жабрев Сергей Борисович
RU2519075C1
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1996
  • Копылов А.Г.
  • Дубровский В.А.
RU2112069C1
Жаропрочный никелевый сплав 2019
  • Данилов Денис Викторович
  • Логунов Александр Вячеславович
RU2697674C1
ДЕФОРМИРУЕМЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2019
  • Храмин Роман Владимирович
  • Буров Максим Николаевич
  • Логунов Александр Вячеславович
  • Данилов Денис Викторович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Мухтаров Шамиль Хамзаевич
  • Мулюков Радик Рафикович
RU2695097C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ КОТЛОВ И ПАРОВЫХ ТУРБИН, РАБОТАЮЩИХ ПРИ УЛЬТРАСВЕРХКРИТИЧЕСКИХ ПАРАМЕТРАХ ПАРА 2017
  • Скоробогатых Владимир Николаевич
  • Лубенец Владимир Платонович
  • Козлов Павел Александрович
  • Логашов Сергей Юрьевич
  • Яковлев Евгений Игоревич
RU2637844C1
ЖАРОПРОЧНЫЙ НИКЕЛЕВЫЙ СПЛАВ, ОБЛАДАЮЩИЙ ВЫСОКИМ СОПРОТИВЛЕНИЕМ К СУЛЬФИДНОЙ КОРРОЗИИ В СОЧЕТАНИИ С ВЫСОКОЙ ЖАРОПРОЧНОСТЬЮ 2013
  • Шмотин Юрий Николаевич
  • Старков Роман Юрьевич
  • Лещенко Игорь Алексеевич
  • Данилов Денис Викторович
  • Цатурян Эдуард Ованесович
  • Логунов Александр Вячеславович
  • Захаров Юрий Никитович
RU2520934C1
ЖАРОПРОЧНЫЙ ГРАНУЛИРОВАННЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2008
  • Береснев Александр Германович
  • Логунов Александр Вячеславович
  • Логачева Алла Игоревна
  • Таран Павел Владимирович
  • Логачев Александр Васильевич
  • Разумовский Игорь Михайлович
RU2386714C1
Литейный жаропрочный никелевый сплав с монокристальной структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2768946C1
Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него 2016
  • Каблов Евгений Николаевич
  • Петрушин Николай Васильевич
  • Оспенникова Ольга Геннадиевна
  • Аргинбаева Эльвира Гайсаевна
  • Горюнов Александр Валерьевич
  • Елютин Евгений Сергеевич
RU2633679C1

Иллюстрации к изобретению RU 2 081 930 C1

Реферат патента 1997 года ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым для наплавки деталей, работающих на истирание в условиях высоких температур при воздействии значительных циклических и контактных нагрузок, например, лопаток газотурбинных двигателей (ГТД). Задачей изобретения является повышение исходной твердости сплава при работе в условиях высоких температур. Для решения поставленной задачи известный сплав, содержащий углерод, хром, титан, алюминий, кобальт, ниобий, вольфрам, молибден, лантан, железо, гафний, бор, церий, иттрий, никель - остальное дополнительно содержит тантал и рений при следующем соотношении, мас.%: углерод 0,12-0,18, хром 4,3-5,6, титан 0,9-1,3, алюминий 5,65-6,25, кобальт 8,0-10,0, ниобий - 4,0-4,8, вольфрам 10,9-12,5, молибден 2,5-3,5, железо 0,1-1,0, лантан 0,005-0,05, гафний 0,01-0,1, бор 0,005-0,016, церий 0,005-0,025, иттрий 0,005-0,025, тантал 0,15-0,35, никель - остальное. 1 табл.

Формула изобретения RU 2 081 930 C1

Литейный жаропрочный сплав на основе никеля, содержащий углерод, хром, титан, алюминий, кобальт, ниобий, вольфрам, молибден, железо, лантан, гафний, бор, церий и иттрий, отличающийся тем, что он дополнительно содержит тантал и рений при следующем соотношении компонентов, мас.

Углерод 0,12 0,18
Хром 4,3 5,6
Титан 0,9 1,3
Алюминий 5,65 6,25
Кобальт 8,0 10,0
Ниобий 4,0 4,8
Вольфрам 10,9 12,5
Молибден 2,5 3,5
Железо 0,1 1,0
Лантан 0,005 0,05
Гафний 0,01 0,1
Бор 0,005 0,015
Церий 0,005 0,025
Иттрий 0,005 0,025
Тантал 0,15 0,35
Рений 0,15 0,35
Никель Остальноер

Документы, цитированные в отчете о поиске Патент 1997 года RU2081930C1

Патент РФ N 2002844, кл
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Автоматический огнетушитель 0
  • Александров И.Я.
SU92A1

RU 2 081 930 C1

Авторы

Копылов А.Г.

Дубровский В.А.

Батуев В.Н.

Даты

1997-06-20Публикация

1994-06-15Подача