СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ Российский патент 1994 года по МПК C22C1/04 B22F3/14 

Описание патента на изобретение RU2017846C1

Изобретение относится к порошковой металлургии.

Наиболее близким техническим решением является способ изготовления мишеней из композиционных материалов, включающий приготовление экзотермической смеси порошков металла (титана) и неметаллов (бора и углерода), брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование, выдержку продуктов горения под давлением и их охлаждение с заданной скоростью.

Известный способ позволяет получать плотные крупногабаритные изделия, но не позволяет получить мишени для напыления высокорезистивных пленок, способных работать при высоких температурах и перепадах температур на воздухе.

Сущность изобретения заключается в том, что в способе изготовления мишеней из композиционных материалов, преимущественно для ионно-плазменного напыления тонкопленочных резисторов, включающем приготовление экзотермической смеси порошков металла с неметаллами, брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование, выдержку под давлением продуктов горения и их охлаждение, согласно изобретению в качестве экзотермической смеси используют смесь следующего состава, мас.%: Алюминий (Al) 15,03-33,81 Оксид титана (TiO2) 13,35-30,05 Оксид бора (В2О3) 11,62-28,14 Диборид титана (TiB2) 60,0-10,0 причем дисперсность порошка оксида бора не превышает 500 мкм, диборида титана - менее 20 мкм, а удельные поверхности порошков оксида титана и алюминия соответственно равны, м2/г: 0,70-5,75 и 0,7-0,3.

В способе в процессе горения формируется продукт, представляющий собой двухфазную малопористую композицию: диборид титана - оксид алюминия. Последующее горячее деформирование по технологии СВС-компактирования позволяет получить малопористые мишени для ионно-плазменного распыления высокоомных резисторов в одну технологическую стадию. Соотношение оксида алюминия и диборида титана в композиции определяет величину удельного электросопротивления пленок. За нижним пределом указанных диапазонов процесс горения не происходит в связи с низкой экзотермичностью смеси. За верхним пределом указанных диапазонов процесс горения сопровождается настолько интенсивным газовыделением, что не удается сохранить форму и размеры мишени.

П р и м е р 1. Берут порошки оксида титана с удельной поверхностью 3,5 м2/г, алюминия - 0,5 м2/г, а также порошки оксида бора дисперсностью менее 315 мкм и диборида титана менее 20 мкм. Готовят смесь следующего состава, мас.%: TiO2 23,5 B2O3 20,5 Al 26,4 TiB2 29,6
Данный состав обеспечивает получение композиции, содержащей, мас.%: TiB2 50; Al2O3 50.

Смесь брикетируют (диаметр брикета 125 мм) до относительной плотности 50% . Размещают в реакционной пресс-форме, инициируют реакцию горения путем локального теплового сигнала на вольфрамовую спираль, контактирующую с брикетом. После завершения процесса горения продукты горения подвергают деформированию. Выдерживают под давлением компактирования в течение 30 с. Охлаждают продукты горения в печи сопротивления со скоростью 20оС/мин. Мишень шлифуют с опорных плоскостей на плоскошлифовальном станке. Проводят магнетронное распыление на ситаловые подложки и проводят измерения электрофизических свойств тонкопленочных резисторов. Измеряют удельное электросопротивление (ρs), термический коэффициент сопротивления (ТКС) и коэффициент временной стабильности при выдержке пленки в течение 1000 ч на воздухе под нагрузкой 2 Вт/см2 при 65оС (Кст). Количественные характеристики приведены в таблице.

П р и м е р ы 2-5. В условиях примера 1 применяют состав смеси и дисперсность порошков смеси в соответствии с таблицей.

П р и м е р 6 (прототип). В условиях прототипа готовят экзотермическую смесь порошков титана дисперсностью менее 160 мкм, углерода (сажи) - менее 0,2 мкм, бора (аморфного коричневого) - менее 1 мкм при следующем соотношении компонента, мас.%: титан 75,6; углерод 12,0; бор 12,4.

Данные по примерам сведены в таблицу.

Из таблицы видно, что в случае примеров 4 и 5 не удалось получить качественных мишеней состава TiB2-Al2O3, поэтому отсутствуют данные по электрофизике пленок.

Тонкопленочные резисторы, полученные магнетронным распылением мишеней системы TiC-TiB2, полученных по известному способу, обладают значительно более низким сопротивлением при близких значениях ТКС и Кст.

Таким образом композиционные мишени, полученные методом самораспространяющегося высокотемпературного синтеза по предложенному способу состава TiB2-Al2O3, обеспечивают производство высокоомных резистивных элементов. Последние имеют широкую область применения, например, в качестве высокотемпературных нагревателей, стойких к воздействию высоких температур (до 600-700оС) и термоциклированию на воздухе.

Похожие патенты RU2017846C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО МОНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИБОРИДА МЕТАЛЛА 1995
  • Балашов В.Б.
  • Кирдяшкин А.И.
  • Максимов Ю.М.
  • Назыров И.Р.
RU2087262C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО КАТОДА ДЛЯ НАНЕСЕНИЯ МНОГОКОМПОНЕНТНЫХ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ 2013
  • Прибытков Геннадий Андреевич
  • Коростелева Елена Николаевна
  • Коржова Виктория Викторовна
  • Фирсина Ирина Александровна
  • Вагнер Марина Ивановна
RU2534324C1
МИШЕНЬ ДЛЯ ПОЛУЧЕНИЯ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2005
  • Левашов Евгений Александрович
  • Курбаткина Виктория Владимировна
  • Штанский Дмитрий Владимирович
  • Сенатулин Борис Романович
RU2305717C2
МИШЕНЬ ДЛЯ ПОЛУЧЕНИЯ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2014
  • Левашов Евгений Александрович
  • Погожев Юрий Сергеевич
  • Потанин Артем Юрьевич
  • Новиков Александр Валентинович
  • Швындина Наталия Владимировна
RU2569293C1
Способ изготовления композиционных материалов на основе Ti-B-Fe, модифицированных наноразмерными частицами AIN 2020
  • Болоцкая Анастасия Вадимовна
  • Михеев Максим Валерьевич
  • Бажин Павел Михайлович
  • Столин Александр Моисеевич
RU2737185C1
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ В РЕЖИМЕ ГОРЕНИЯ 2004
  • Вадченко Сергей Георгиевич
  • Боровинская Инна Петровна
  • Мержанов Александр Григорьевич
RU2277031C2
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С НАНОРАЗМЕРНОЙ СТРУКТУРОЙ 2010
  • Бажин Павел Михайлович
  • Столин Александр Моисеевич
  • Стельмах Любовь Семеновна
  • Щербаков Владимир Андреевич
RU2414991C1
СПОСОБ ПРИГОТОВЛЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-ТИТАН-БОР 1997
  • Никитин В.И.
  • Макаренко А.Г.
  • Кандалова Е.Г.
RU2138572C1
ШИХТА НА ОСНОВЕ ТИТАНА ДЛЯ ПОЛУЧЕНИЯ МИШЕНЕЙ ПРЕИМУЩЕСТВЕННО ДЛЯ ИОННО-ПЛАЗМЕННОГО НАПЫЛЕНИЯ ТОНКОПЛЕНОЧНЫХ РЕЗИСТОРОВ 1991
  • Богатов Ю.В.
  • Левашов Е.А.
  • Касянин В.И.
  • Питюлин А.Н.
  • Бунин В.М.
  • Мамян С.С.
  • Бондарчук Ю.В.
SU1818864A1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО КАТОДА 2009
  • Прибытков Геннадий Андреевич
  • Коростелева Елена Николаевна
  • Гурских Алексей Валерьевич
  • Коржова Виктория Викторовна
  • Вагнер Марина Ивановна
RU2421844C1

Иллюстрации к изобретению RU 2 017 846 C1

Реферат патента 1994 года СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Изобретение относится к порошковой металлургии, в частности к способам получения мишеней для ионно-плазменного распыления. Сущность способа заключается в инициировании реакции горения в экзотермической смеси, последующем горячем деформировании, выдержке под давлением продуктов горения и их охлаждении. В качестве экзотермической смеси используют смесь состава, (мас.% ): алюминий 15,00 - 33,81; оксид титана 13,35 - 30,05; оксид бора 11,62 - 28,14; диборид титана 60,0 - 10,0, причем дисперсность порошка оксида бора не превышает 500 мкм, диборида титана - менее 20 мкм, а удельные поверхности порошков оксида титана и алюминия соответственно равны, м2/г : 0,70 - 5,75 и 0,7 - 0,30. Композиционные мишени, полученные по данному способу, обеспечивают производство высокоомных резистивных элементов. Последние имеют широкую область применения, например, в качестве высокотемпературных нагревателей, стойких к воздействию высоких температур (до 600 - 700 °С) и термоциклированию на воздухе. 1 табл.

Формула изобретения RU 2 017 846 C1

СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, преимущественно мишеней для ионно-плазменного напыления тонкопленочных резисторов, включающий приготовление экзотермической смеси порошков металла с неметаллами, брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование с выдержкой под давлением продуктов горения и охлаждение, отличающийся тем, что в качестве экзотермической смеси используют смесь, содержащую компоненты, мас.%:
Алюминий 15,03 - 33,81
Оксид титана 13,35 - 30,05
Оксид бора 11,62 - 28,14
Диборид титана (TiB2) 60,0 - 10,0
причем дисперсность порошка оксида бора не превышает 500 мкм, диборида титана - менее 20 мкм, а удельные поверхности порошков оксида титана и алюминия соответственно равны 0,70 - 5,75 и 0,7 - 0,31 м2 / г.

Документы, цитированные в отчете о поиске Патент 1994 года RU2017846C1

Мержанов А.П
Самораспространяющийся высокотемпературный синтез: двадцать лет поисков и находов
Препринт
ИСМАН, Черноголовка, 1989, с.43-56.

RU 2 017 846 C1

Авторы

Левашов Е.А.

Богатов Ю.В.

Питюлин А.Н.

Мамян С.С.

Вершинников В.И.

Косянин В.И.

Мержанов А.Г.

Боровинская И.П.

Бондарчук Ю.В.

Даты

1994-08-15Публикация

1992-06-25Подача