Изобретение относится к порошковой металлургии.
Наиболее близким техническим решением является способ изготовления мишеней из композиционных материалов, включающий приготовление экзотермической смеси порошков металла (титана) и неметаллов (бора и углерода), брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование, выдержку продуктов горения под давлением и их охлаждение с заданной скоростью.
Известный способ позволяет получать плотные крупногабаритные изделия, но не позволяет получить мишени для напыления высокорезистивных пленок, способных работать при высоких температурах и перепадах температур на воздухе.
Сущность изобретения заключается в том, что в способе изготовления мишеней из композиционных материалов, преимущественно для ионно-плазменного напыления тонкопленочных резисторов, включающем приготовление экзотермической смеси порошков металла с неметаллами, брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование, выдержку под давлением продуктов горения и их охлаждение, согласно изобретению в качестве экзотермической смеси используют смесь следующего состава, мас.%: Алюминий (Al) 15,03-33,81 Оксид титана (TiO2) 13,35-30,05 Оксид бора (В2О3) 11,62-28,14 Диборид титана (TiB2) 60,0-10,0 причем дисперсность порошка оксида бора не превышает 500 мкм, диборида титана - менее 20 мкм, а удельные поверхности порошков оксида титана и алюминия соответственно равны, м2/г: 0,70-5,75 и 0,7-0,3.
В способе в процессе горения формируется продукт, представляющий собой двухфазную малопористую композицию: диборид титана - оксид алюминия. Последующее горячее деформирование по технологии СВС-компактирования позволяет получить малопористые мишени для ионно-плазменного распыления высокоомных резисторов в одну технологическую стадию. Соотношение оксида алюминия и диборида титана в композиции определяет величину удельного электросопротивления пленок. За нижним пределом указанных диапазонов процесс горения не происходит в связи с низкой экзотермичностью смеси. За верхним пределом указанных диапазонов процесс горения сопровождается настолько интенсивным газовыделением, что не удается сохранить форму и размеры мишени.
П р и м е р 1. Берут порошки оксида титана с удельной поверхностью 3,5 м2/г, алюминия - 0,5 м2/г, а также порошки оксида бора дисперсностью менее 315 мкм и диборида титана менее 20 мкм. Готовят смесь следующего состава, мас.%: TiO2 23,5 B2O3 20,5 Al 26,4 TiB2 29,6
Данный состав обеспечивает получение композиции, содержащей, мас.%: TiB2 50; Al2O3 50.
Смесь брикетируют (диаметр брикета 125 мм) до относительной плотности 50% . Размещают в реакционной пресс-форме, инициируют реакцию горения путем локального теплового сигнала на вольфрамовую спираль, контактирующую с брикетом. После завершения процесса горения продукты горения подвергают деформированию. Выдерживают под давлением компактирования в течение 30 с. Охлаждают продукты горения в печи сопротивления со скоростью 20оС/мин. Мишень шлифуют с опорных плоскостей на плоскошлифовальном станке. Проводят магнетронное распыление на ситаловые подложки и проводят измерения электрофизических свойств тонкопленочных резисторов. Измеряют удельное электросопротивление (ρs), термический коэффициент сопротивления (ТКС) и коэффициент временной стабильности при выдержке пленки в течение 1000 ч на воздухе под нагрузкой 2 Вт/см2 при 65оС (Кст). Количественные характеристики приведены в таблице.
П р и м е р ы 2-5. В условиях примера 1 применяют состав смеси и дисперсность порошков смеси в соответствии с таблицей.
П р и м е р 6 (прототип). В условиях прототипа готовят экзотермическую смесь порошков титана дисперсностью менее 160 мкм, углерода (сажи) - менее 0,2 мкм, бора (аморфного коричневого) - менее 1 мкм при следующем соотношении компонента, мас.%: титан 75,6; углерод 12,0; бор 12,4.
Данные по примерам сведены в таблицу.
Из таблицы видно, что в случае примеров 4 и 5 не удалось получить качественных мишеней состава TiB2-Al2O3, поэтому отсутствуют данные по электрофизике пленок.
Тонкопленочные резисторы, полученные магнетронным распылением мишеней системы TiC-TiB2, полученных по известному способу, обладают значительно более низким сопротивлением при близких значениях ТКС и Кст.
Таким образом композиционные мишени, полученные методом самораспространяющегося высокотемпературного синтеза по предложенному способу состава TiB2-Al2O3, обеспечивают производство высокоомных резистивных элементов. Последние имеют широкую область применения, например, в качестве высокотемпературных нагревателей, стойких к воздействию высоких температур (до 600-700оС) и термоциклированию на воздухе.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО МОНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИБОРИДА МЕТАЛЛА | 1995 |
|
RU2087262C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО КАТОДА ДЛЯ НАНЕСЕНИЯ МНОГОКОМПОНЕНТНЫХ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ | 2013 |
|
RU2534324C1 |
МИШЕНЬ ДЛЯ ПОЛУЧЕНИЯ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2005 |
|
RU2305717C2 |
МИШЕНЬ ДЛЯ ПОЛУЧЕНИЯ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2569293C1 |
Способ изготовления композиционных материалов на основе Ti-B-Fe, модифицированных наноразмерными частицами AIN | 2020 |
|
RU2737185C1 |
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ В РЕЖИМЕ ГОРЕНИЯ | 2004 |
|
RU2277031C2 |
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С НАНОРАЗМЕРНОЙ СТРУКТУРОЙ | 2010 |
|
RU2414991C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-ТИТАН-БОР | 1997 |
|
RU2138572C1 |
ШИХТА НА ОСНОВЕ ТИТАНА ДЛЯ ПОЛУЧЕНИЯ МИШЕНЕЙ ПРЕИМУЩЕСТВЕННО ДЛЯ ИОННО-ПЛАЗМЕННОГО НАПЫЛЕНИЯ ТОНКОПЛЕНОЧНЫХ РЕЗИСТОРОВ | 1991 |
|
SU1818864A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО КАТОДА | 2009 |
|
RU2421844C1 |
Изобретение относится к порошковой металлургии, в частности к способам получения мишеней для ионно-плазменного распыления. Сущность способа заключается в инициировании реакции горения в экзотермической смеси, последующем горячем деформировании, выдержке под давлением продуктов горения и их охлаждении. В качестве экзотермической смеси используют смесь состава, (мас.% ): алюминий 15,00 - 33,81; оксид титана 13,35 - 30,05; оксид бора 11,62 - 28,14; диборид титана 60,0 - 10,0, причем дисперсность порошка оксида бора не превышает 500 мкм, диборида титана - менее 20 мкм, а удельные поверхности порошков оксида титана и алюминия соответственно равны, м2/г : 0,70 - 5,75 и 0,7 - 0,30. Композиционные мишени, полученные по данному способу, обеспечивают производство высокоомных резистивных элементов. Последние имеют широкую область применения, например, в качестве высокотемпературных нагревателей, стойких к воздействию высоких температур (до 600 - 700 °С) и термоциклированию на воздухе. 1 табл.
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, преимущественно мишеней для ионно-плазменного напыления тонкопленочных резисторов, включающий приготовление экзотермической смеси порошков металла с неметаллами, брикетирование смеси, инициирование реакции горения в смеси, последующее горячее деформирование с выдержкой под давлением продуктов горения и охлаждение, отличающийся тем, что в качестве экзотермической смеси используют смесь, содержащую компоненты, мас.%:
Алюминий 15,03 - 33,81
Оксид титана 13,35 - 30,05
Оксид бора 11,62 - 28,14
Диборид титана (TiB2) 60,0 - 10,0
причем дисперсность порошка оксида бора не превышает 500 мкм, диборида титана - менее 20 мкм, а удельные поверхности порошков оксида титана и алюминия соответственно равны 0,70 - 5,75 и 0,7 - 0,31 м2 / г.
Мержанов А.П | |||
Самораспространяющийся высокотемпературный синтез: двадцать лет поисков и находов | |||
Препринт | |||
ИСМАН, Черноголовка, 1989, с.43-56. |
Авторы
Даты
1994-08-15—Публикация
1992-06-25—Подача