СПОСОБ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА НА ПЛАНЕТУ Российский патент 1994 года по МПК B64G1/24 

Описание патента на изобретение RU2021173C1

Изобретение относится к космической технике и может быть использовано при проектировании систем управления движением (СУД) космических аппаратов (КА). В частности изобретение решает задачу трехосной ориентации КА относительно Земли с датчиком построителем местной вертикали (ПМВ) с узким полем обзора на стационарной орбите с высотой полета ≈36000 км (угловой размер Земли ≈17о, поле обзора инфракрасного датчика ПМВ ≈20о).

Наиболее близким к предлагаемому (прототип) является способ ориентации космического аппарата на планету, включающий ориентацию аппарата относительно направления на Солнце, определение углов между направлением на Солнце и осями орбитальной системы координат, поворот аппарата вокруг направления на Солнце до совпадения оси визирования датчика местной вертикали с местной вертикалью планеты.

Технической задачей изобретения является сокращение времени ориентации.

Данная техническая задача решается тем, что в способе, включающем ориентацию аппарата относительно направления на Солнце, определение углов между направлением на Солнце и осями орбитальной системы координат, поворот аппарата вокруг направления на Солнце до совпадения оси визирования датчика местной вертикали с местной вертикалью планеты, перед поворотом вокруг направления на Солнце фиксируют ось аппарата, проекции единичного вектора направления которой на оси, связанной с аппаратом системы координат, равны проекциям единичного вектора направления на Солнце на оси орбитальной системы координат, и поворачивают аппарат в плоскости фиксированная ось - направление на Солнце до совмещения этой оси аппарата с направлением на Солнце.

При этом сокращение времени ориентации достигается за счет минимизации времени ориентации КА на Солнце путем выполнения плоского поворота (т.е. по наикратчайшему пути) и исключения времени ожидания достижения углом СОЗ величины 90о.

На чертеже, поясняющем способ, введены следующие обозначения: 1 - КА (объект); 2 - Солнце; 3 - Земля; 4 - плоскость разворота КА при ориентации на Солнце; 5 - коническая поверхность, образуемая следом оси визирования ПИВ Х при повороте вокруг направления на Солнце; - связанный с КА базис с ортогональными осями Вх, Вy, Bz,
- единичный вектор, направленный по ОВ ПМВ;
= (1,0,0)Т - единичный вектор в проекциях, на связанный с КА базис ;
- единичный вектор направления на Солнце;
= (S, S, S)T - единичный вектор направления на Солнце в проекциях на орбитальный базис ;
Xo - начальное положение ОВ ПМВ;
Х - положение ОВ ПМВ после завершения ориентации на Солнце;
= (r, r, r)T - единичный вектор зафиксированой оси в связанном с КА базисе В,причем rBx=SQx,rBy=SQy,rBz=SQz (верхний индекс "Т" указывает на операцию транспонирования, нижний индекс "y" вектора - на базис в проекциях, на который задается этот вектор).

П р и м е р. Ориентация КА на стационарной орбите.

Операции управления ориентацией осуществляются системой управления движением и навигации (СУДН) КА, построенной на базе бескарданной инерциальной навигационной системы (БИНС).

После включения СУДН в память бортовой цифровой вычислительной машины (БЦВМ) вводят элементы орбиты КА. Используя известные соотношения и алгоритмы, БИНС, интегрируя уравнения движения центра масс КА, вычисляет матрицу (или кватернион) λ перехода от инерциальной системы координат (ось Iγx - направлена в точку весеннего равноденствия, ось Iγz - на северный полюс, Iγy - дополняет систему координат до правой) к орбитальному базису Q (ось Qх направлена на центр планеты по МВ, Qz - перпендикулярно плоскости орбиты, Qy - по направлению полета).

Таким образом, используя расчетную матрицу λ , в БИНС(БЦВМ) вычисляются величины проекций единичного вектора направления на Солнце на оси орбитального базиса
= λ · = (λ11, λ21, λ31)T , (1)
где = (1,0,0)T
После раскрутки гиромоторов блока датчиков угловых скоростей в БИНС, интегрируя кинематические уравнения, вычисляется матрица Н перехода от текущего положения КА к инерциальному базису , совпадающему на момент начала интегрирования кинематических уравнению со связанным с КА базисом . По команде от блока, реализующего выполнение циклограммы управления, в момент времени ts блок датчиков измерения направления на Солнце (например, со сферическим полем обзора) выполняет измерение проекций единичного вектора направления на Солнце в связанном базисе. На этот же момент времени фиксируется матрица текущего углового положения КА Н (ts), вычисляются и запоминаются проекции вектора направления на Солнце на базис :
(tS) = H(tS)(tS)
Далее в БИНС непрерывно вычисляются текущие координаты вектора Cолнце
= (t) = Hт(t)(ts) , (2) при этом датчики Солнца могут быть выключены. Определяются координаты вектора, фиксирующие ось КА, проекции которого на базис равны проекциям вектора Солнце на орбитальный базис
= (r, r, r)T , где
r= S
r= S
r= S Затем вычисляются координаты единичного вектора , направление которого определяет вектор угловой скорости КА с обратным знаком для поворота с целью совмещения упомянутой фиксированной оси с направлением на Солнце по наикратчайшему пути
= - [ · ]/[] и угол между фиксированной осью и направлением на Солнце
Δα = arccos () Вычисляется кватернион рассогласования
M = cos , sin , sin, sin.

После формирования кватерниона М кинематический и динамический контур управления, реализованные по известным законам, осуществляют операции по управлению поворотом КА, в результате которых величина рассогласования Δα сводится к нулю (с точностью до погрешностей ориентации), т.е. поворачивается в плоскости 4 до совмещения с . При достижении и поддержании Δα < Δαдопуст в течение заданного времени, например, с помощью устройства времени формируется признак -готовность к развороту вокруг направления на Солнце. Далее по известным соотношениям формируются скорости коррекции, вызывающие поворот КА вокруг направления на Солнце при одновременном устранении рассогласования Δα . При этом ОВ ПВМ ( совпадает с Х) и движется по поверхности конуса 5. После совмещения оси визирования ПВМ с МВ планеты 3, определяемом по сигналам датчика ПМВ, поворот завершается и управление передается контуру поддержания орбитальной ориентации.

Таким образом, благодаря выполнению минимально возможных разворотов КА и устранению времени ожидания расчетного угла СОЗ (в прототипе 90о) достигается сокращение времени и обеспечивается построение трехосной орбитальной ориентации.

Похожие патенты RU2021173C1

название год авторы номер документа
СПОСОБ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ПО МЕСТНОЙ ВЕРТИКАЛИ ПЛАНЕТЫ 1991
  • Мельников В.Н.
  • Казначеев Ю.В.
  • Черток М.Б.
RU2021174C1
СПОСОБ ФОРМИРОВАНИЯ РАЗГРУЗОЧНОГО МОМЕНТА ДЛЯ СИСТЕМЫ СИЛОВЫХ ГИРОСКОПОВ КОСМИЧЕСКОГО АППАРАТА С СОЛНЕЧНЫМИ БАТАРЕЯМИ 1992
  • Ковтун В.С.
  • Кузьмичев А.Ю.
  • Платонов В.Н.
RU2030338C1
СПОСОБ СТАБИЛИЗАЦИИ УГЛОВОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА С УПРУГИМИ ВЫНОСНЫМИ ЭЛЕМЕНТАМИ 1992
  • Мельников В.Н.
  • Бранец В.Н.
  • Семячкин В.С.
RU2020112C1
СИСТЕМА УПРАВЛЕНИЯ ПРОСТРАНСТВЕННЫМ РАЗВОРОТОМ КОСМИЧЕСКОГО АППАРАТА 1992
  • Левский М.В.
RU2006431C1
СИСТЕМА УПРАВЛЕНИЯ ТЕЛЕВИЗИОННЫМ ВИДЕОСПЕКТРАЛЬНЫМ КОМПЛЕКСОМ КОСМИЧЕСКОГО АППАРАТА 1992
  • Гаушус Э.В.
  • Грибачев К.Г.
  • Зыбин Ю.Н.
  • Бедин Б.И.
  • Стишев Ю.В.
  • Шаров В.А.
RU2068801C1
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ УГЛОВОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА 1992
  • Мельников В.Н.
  • Бранец В.Н.
  • Семячкин В.С.
RU2020113C1
СПОСОБ РАЗГРУЗКИ СИСТЕМЫ СИЛОВЫХ ГИРОСКОПОВ КОСМИЧЕСКОГО АППАРАТА 1991
  • Ковтун В.С.
  • Волков О.В.
RU2028256C1
ИЗМЕРИТЕЛЬ УГЛА ОТКЛОНЕНИЯ ОСИ КОСМИЧЕСКОГО АППАРАТА ОТ ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ 1993
  • Мельников В.Н.
  • Рабовский А.Е.
  • Голицина Н.А.
RU2020412C1
СПОСОБ УПРАВЛЕНИЯ РАЗВОРОТОМ КОСМИЧЕСКОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 1993
  • Левский М.В.
RU2095295C1
СПОСОБ АВТОМАТИЧЕСКОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА И СОЛНЕЧНОЙ БАТАРЕИ ПРИ ОТКАЗЕ УСТРОЙСТВА ПОВОРОТА СОЛНЕЧНОЙ БАТАРЕИ 2014
  • Сыров Анатолий Сергеевич
  • Гордийко Сергей Владимирович
  • Шатский Михаил Александрович
  • Бурдыгов Борис Георгиевич
RU2581106C1

Иллюстрации к изобретению RU 2 021 173 C1

Реферат патента 1994 года СПОСОБ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА НА ПЛАНЕТУ

Область применения: в космической технике и может быть использовано при проектировании систем управления движением космических аппаратов. Сущность изобретения: для сокращения времени построения ориентации оси визирования (ОВ) узкопольного измерителя углового отклонения космического аппарата (КА) от направления на источник излучения, в частности инфракрасного построителя местной вертикали (ПМВ) на центр - местную вертикаль (МВ) Земли, а также для оебспечения трехосной ориентации КА к моменту совмещения ОВ с МВ, фиксируют ось КА, проекция направляющего единичного вектора которой на оси связанного с КА базиса равна соответствующим проекциям единичного вектора направления на Солнце на оси орбитального базиса. Фиксируют плоскость, образованную направлениями на Солнце и зафиксированной оси, поворачивают КА по наикратчайшему пути вокруг оси, перпендикулярной зафиксированной плоскости, до совмещения упомянутой оси КА с направлением на Солнце. Затем поворачивают КА вокруг направления на Солнце до совмещения ОВ с МВ одновременно с компенсацией отклонения оси поворота КА от направления на Солнце и положения самой оси поворота КА в процессе изменения величин проекций единичного вектора направления на Солнце на оси орбитального базиса в течение времени выполнения ориентации КА. 1 ил.

Формула изобретения RU 2 021 173 C1

СПОСОБ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА НА ПЛАНЕТУ, включающий ориентацию аппарата относительно направления на Солнце, определение углов между направлением на Солнце и осями орбитальной системы координат, поворот аппарата вокруг направления на Солнце до совпадения оси визирования датчика местной вертикали с местной вертикалью планеты, отличающийся тем, что перед поворотом вокруг направления на Солнце фиксируют ось аппарата, проекции единичного вектора направления которой на оси, связанной с аппаратом системы координат, равны проекциям единичного вектора направления на Солнце на оси орбитальной системы координат, и поворачивают аппарат в плоскости фиксирования ось - направление на Солнце до совмещения указанной фиксированной оси аппарата с направлением на Солнце.

Документы, цитированные в отчете о поиске Патент 1994 года RU2021173C1

Мирошниченко Л.А
и др
Система ориентации и стабилизации спутника телевизионного вещания Экран, Изв.св
Н
СССР, Техническая кибернетика, М.: Наука, 1977, N 4.

RU 2 021 173 C1

Авторы

Мельников В.Н.

Казначеев Ю.В.

Черток М.Б.

Даты

1994-10-15Публикация

1991-07-22Подача