СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОЙ ПЕНОПОЛИУРЕТАНОВОЙ КОМПОЗИЦИИ С ИММОБИЛИЗОВАННЫМ ТРИПСИНОМ Российский патент 1995 года по МПК A61K38/43 

Описание патента на изобретение RU2026685C1

Изобретение относится к медицине, в частности к биохимии и хирургии, и может быть использовано для создания высокостабильных иммобилизованных ферментных препаратов, а также при разработке лекарственных форм пролонгированного действия для лечения гнойных осложнений.

Известны методы иммобилизации протеолитических ферментов (протеиназ), основанные на использовании в качестве полимерной матрицы полиакриламида (Мартинек К. и др. Докл.АН СССР, 1982. - т.263. - N 2. - с.494-497; Можаев В. В. Получение и применение иммобилизованных ферментов в научных исследованиях, промышленности и медицине. Тез.докл. - Л., 1980. - с.79) и белковых носителей - водонерастворимый сывороточный альбумин, коллагеновые пленки (Веремеенко К. Н. и Карпенко Г.Ф. Получение и применение иммобилизованных ферментов в научных исследованиях, промышленности и медицине. Тез.докл. - Л., 1980. - с.114).

К недостаткам полимерных матриц, полученных с помощью этих методов, относятся их высокая токсичность, бионесовместимость, присутствие белков, которые могут изменять сродство к исследуемым субстратам, повышать их антигенные, иммуногенные и аллергенные свойства.

Преимуществом полиуретановых композиций, как исходного материала для иммобилизации ферментов, является их биодеградируемость и биосовместимость. Однако при иммобилизации протеиназ на полиуретанах использовались большей частью монолитные низкопористые (пленочные) материалы (Вирник А.Д. и др. Получение и применение иммобилизованных ферментов в научных исследованиях, промышленности и медицине. Тез.докл., Л., 1980. - с.117).

Недостатком иммобилизованных ферментов на низкопористых полиуретанах является ограниченность области их практического использования в биохимических средах и при разработке и применении лекарственных форм на их основе из-за затрудненности массопереноса субстрата к иммобилизованной протеиназе, длительности перемешивания до начала вспенивания (15-20 мин), токсичности активатора (N-этилдиэтаноламин), относительно высокой летучести полиэфирного предполимера (средняя мол.м.2000), длительности и достаточной сложности предварительных операций.

В качестве прототипа изобретения принят способ иммобилизации трипсина на полиуретановой матрице, заключающийся во взаимодействии трипсина с толуилендиизоцианатом и последующей сополимеризацией форпродукта с полиэфирным компонентом.

Цель изобретения - получение биосовместимого, биодеградируемого, высокопористого, ферментсодержащего полимера, повышающего стабильность фермента, время его действия и доступность субстратам. Для достижения указанной цели трипсин предварительно связывается с предполимером, содержащим толуилендиизоцианат 80/20 и полиизоцианат в соотношении (1,8-2,2):(1,3-1,0) с последующим удлинением цепи полимера с помощью компонента, содержащего активатор триэтилендиамин.

Способ осуществляется следующим образом.

Приготовление полиэфирного (А) и изоцианатного (Б) форпродуктов. Компонент А содержит 94,5 мас.% лапрола 5003, 2,8% лапрола 402 и 2,7% активатора; активатор - 10% триэтилендиамин в воде (средняя мол.м.5000). Компонент Б (суризон АММ) - предполимер на основе триэтиленгликоля, толуилендиизоцианата 80/20 и полиизоцианата, соотношение по массе (1,8-2,2):(1,3-1,0). Готовый компонент: раствор продукта конденсации ≈ 32-36% в толуилендиизоцианате 80/20 ≈ 64-68%. Содержание NCO-групп ≈ 27,5%.

Иммобилизация трипсина.

К 0,09-1,1 мл компонента B добавляют 1-10 мг сухого трипсина (Spofa) и тщательно вручную перемешивают в течение 20-40 с. К полученной системе добавляют 0,3-3,0 мл компонента А и вновь тщательно вручную перемешивают в течение 10-15 с. Через 2-7 мин пена перестает расти, через 8-15 мин - затвердевает. Соотношение компонента A:B:фермент составляет 900:300:1. Полученные образцы перистогубчатого полимера обладали высокой эластичностью и гигроскопичностью.

Свойства иммобилизованного трипсина.

При исследовании свойств трипсина использовали аликвоты матрицы по 50-100 мг, содержащие по 50-100 мкг иммобилизованного фермента. В качестве контроля использовали раствор фермента в той же концентрации, а также полиуретан без иммобилизованного фермента. Активность трипсина оценивали по расщеплению низкомолекулярного хромогенного субстрата - α-N-бензоил-D,Z-аргининпаранитроанилида (БАПНА) (Keilova M., Keil B., - FEBS Letters. - 1969. - 4. - p.295) и по расщеплению естественного высокомолекулярного субстрата - бычьего сывороточного альбумина (Алексеенко Л.П. Современные методы в биохимии. - М.: Медицина, 1968, с.115). В первом случае прирост продуктов гидролиза регистрировали по светопоглощению р-нитроанилина при 410 нм, во втором случае - по приросту светопоглощения при 280 нм и с помощью реакции Лоурин (Lowry O. , Rosenbrough N., Farr A. et al. - J.Biol.Chem. - 1957. - 193. - p.265). Результаты обработаны статистически (Рокицкий П.Ф. Биологическая статистика. Минск: Вышэйшая школа, 1973).

Стабильность иммобилизованного трипсина при хранении.

Исследовали стабильность иммобилизованного трипсина при его хранении при комнатной температуре в 0,9% растворе NaCl в сравнении с раствором трипсина той же концентрации. Иммобилизованный фермент полностью сохранял активность в течение 3 сут. Через 5 суток его активность снижалась на 20±4%, а через 7 сут - на 48±8%, сохраняясь на таком уровне в течение 14 сут. Раствор фермента уже через 3-е суток терял 50±6% своей активности, а к 7 суткам полностью инактивировался.

Оптимум рН действия иммобилизованного трипсина.

Для изучения оптимума рН использовали 0,1 М цитратный буфер (рН 4,0), 0,1 М фосфатный буфер (рН 6,0) и 0,1 М трис-буфер (рН 8,0 и рН 10,0). Наиболее оптимальным значением среды для действия иммобилизованного трипсина было рН 8,0 и рН 10,0. При значении среды рН 6,0 он терял 52±7% своей активности, а при рН 4,0 - 85±4%. Фермент в растворе был наиболее активен при рН 8,0, при рН 4,6 и 10 он сохранял 7±3%, 18±6% и 74±9% своей активности соответственно.

Термостабильность иммобилизованного трипсина.

Иммобилизованный фермент практически полностью сохранял свою активность при прогревании до 60оС в течение 20 мин; прогревание при 70оС приводило к потере им 42±9% активности. Раствор фермента при прогревании при 50оС терял до 95% исходной активности.

Таким образом, предлагаемый способ иммобилизации трипсина увеличивает его стабильность при хранении в водной фазе, расширяет рН-диапазон его действия, увеличивает термостабильность.

Преимуществами предлагаемого способа являются:
впервые получена высокопористая пенополиуретановая композиция с высокостабильным иммобилизованным трипсином;
впервые в качестве предполимера использован толуилендиизоцианат 80/20 и полиизоцианат в соотношении (1,8-2,2):(1,3-1,0);
впервые в качестве активатора при иммобилизации трипсина использован триэтилендиамин, имеющий невысокую токсичность и сравнительно малую летучесть;
существенно уменьшается время перемешивания компонентов полиуретановой композиции до начала вспенивания (10-12 с), что позволяет применять метод в экспресс-исследованиях;
за счет высокой пористости матрицы иммобилизованный трипсин более доступен для действия низко- и высокомолекулярных субстратов, при этом значительно увеличивается время сохранения его активности и устойчивости к нагреванию и изменению рН среды.

Похожие патенты RU2026685C1

название год авторы номер документа
СПОСОБ ЛЕЧЕНИЯ ГНОЙНЫХ РАН 1992
  • Косинец А.Н.
  • Кирпиченок Л.Н.
  • Бордзиловский В.Я.
  • Сачек М.Г.
  • Стручков Ю.В.
RU2026686C1
Матрица для иммобилизации биологически активных веществ 1980
  • Власов Лев Григорьевич
SU880427A1
Способ получения активированных носителей 1977
  • Кестнер Адо Ильмарович
  • Киппер Хейно Яанович
  • Кивисилла Кюллики Арнольдовна
  • Егоров Хелью Рудольф-Вольдемарович
  • Эрин Анне Эльмаровна
  • Озолиньш Андрис Янович
  • Арен Август Карлович
  • Дайя Дайна Яновна
  • Страздиня Илзе Германовна
SU859372A1
Способ получения иммобилизованных протеиназ 1983
  • Алиновская Валентина Александровна
  • Капуцкий Федор Николаевич
  • Юркштович Татьяна Лукинична
  • Талапин Виталий Иванович
  • Стельмах Виктор Александрович
SU1406161A1
СПОСОБ ИММОБИЛИЗАЦИИ ТРИПСИНА 2010
  • Попова Вера Михайловна
  • Лукина Виктория Алексеевна
  • Ярыгина Елена Игоревна
  • Скороходова Лариса Александровна
  • Гуславский Александр Игнатьевич
  • Самуйленко Анатолий Яковлевич
  • Кочиш Иван Иванович
  • Матвеева Ирина Николаевна
  • Еремец Владимир Иванович
  • Гринь Светлана Анатольевна
  • Раевский Александр Андреевич
  • Беро Иван Леонтьевич
  • Фролова Марина Алексеевна
  • Еремец Наталья Киреевна
RU2437936C1
ВЫСОКОКОНЦЕНТРИРОВАННАЯ ВОДНАЯ НАНОРАЗМЕРНАЯ ПУ-ДИСПЕРСИЯ, НЕ СОДЕРЖАЩАЯ РАСТВОРИТЕЛЬ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ 2014
  • Лебедев Владимир Степанович
  • Короткова Наталья Петровна
  • Мищенко Алексей Александрович
RU2554882C1
СПОСОБ ПОЛУЧЕНИЯ ИММОБИЛИЗОВАННОГО ФЕРМЕНТНОГО ПРЕПАРАТА НА ОСНОВЕ ТРИПСИНА, ГИАЛУРОНОВОЙ КИСЛОТЫ И ПОЛИСАХАРИДОВ, МОДИФИЦИРОВАННЫХ ВИНИЛОВЫМИ МОНОМЕРАМИ 2020
  • Холявка Марина Геннадьевна
  • Артюхов Валерий Григорьевич
  • Панкова Светлана Михайловна
  • Лавлинская Мария Сергеевна
  • Сорокин Андрей Викторович
  • Павловец Вячеслав Викторович
RU2750376C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРЕВЯЗОЧНОГО МАТЕРИАЛА 1999
  • Дуванский В.А.
  • Калинин М.Р.
  • Промоненков В.К.
  • Рыльцев В.В.
  • Толстых М.П.
  • Филатов В.Н.
  • Тепляшин А.С.
  • Корабоев У.М.
  • Юсубалиев М.К.
  • Толстых П.И.
RU2149648C1
БИОКАТАЛИЗАТОР И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2002
  • Лозинский В.И.
  • Дамшкалн Л.Г.
  • Резникова Н.В.
RU2233327C2
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОГЕННОГО ФЕРМЕНТНОГО ПРЕПАРАТА НА ОСНОВЕ ФИЦИНА И НИЗКОМОЛЕКУЛЯРНОГО ХИТОЗАНА 2021
  • Холявка Марина Геннадьевна
  • Артюхов Валерий Григорьевич
  • Панкова Светлана Михайловна
RU2769243C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОЙ ПЕНОПОЛИУРЕТАНОВОЙ КОМПОЗИЦИИ С ИММОБИЛИЗОВАННЫМ ТРИПСИНОМ

Изобретение относится к медицине, а именно к биохимии и хирургии. Известен способ иммобилизации трипсина на полиуретановой матрице, заключающийся во взаимодействии трипсина с толуилендиизоцианатом и последующей сополимеризацией форпродукта с полиэфирным компонентом. Однако иммобилизация трипсина на низкопористой полиуретановой матрице ограничивает область его практического применения. Цель изобретения - получение биосовместимого, биодеградируемого, высокопористого, ферментсодержащего полимера, повышающего стабильность фермента, время его действия и доступность субстратам. Для достижения указанной цели трипсин предварительно связывается с предполимером, содержащим толуилендиизоцианат 80/20 и полиизоцианат в соотношении (1,8-2,2): (1,3-1,0) с последующим удлинением цепи полимера с помощью компонента, содержащего активатор триэтилендиамин.

Формула изобретения RU 2 026 685 C1

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОЙ ПЕНОПОЛИУРЕТАНОВОЙ КОМПОЗИЦИИ С ИММОБИЛИЗОВАННЫМ ТРИПСИНОМ путем взаимодействия трипсина с толуолилендиизоцианатом и последующей сополимеризации форпродукта с полиэфирным компонентом, отличающийся тем, что трипсин предварительно связывают с предполимером на основе триэтиленгликоля, толуоилендиизоцианата в соотношении 80:20 и полиизоцианата в соотношении по массе 1,8-2,2:1,3-1,0 с последующим удлинением цепи полимера с помощью полиэфирного компонента, содержащего активатор триэтилендиамин.

Документы, цитированные в отчете о поиске Патент 1995 года RU2026685C1

Липатова Т.Э
и др
Дверной замок, автоматически запирающийся на ригель, удерживаемый в крайних своих положениях помощью серии парных, симметрично расположенных цугальт 1914
  • Федоров В.С.
SU1979A1
Прибор для определения при помощи радиосигналов местоположения движущегося предмета 1921
  • Петровский А.А.
SU319A1

RU 2 026 685 C1

Авторы

Кирпиченок Л.Н.

Бордзиловский В.Я.

Косинец А.Н.

Сачек М.Г.

Стручков Ю.В.

Даты

1995-01-20Публикация

1992-10-13Подача