Изобретение относится к микробиологии, а именно к способам получения жидких углеводородов.
Наиболее распространенными являются способы получения жидких углеводородов из органических продуктов и с использованием СО2 и Н2химическими методами. Эти реакции протекают при высоких температурах, давлении, в присутствии дорогостоящих металлоксидных катализаторов (Патент N 4670472 и 1401814, кл. С 07 С 1/04).
Известны способы получения углеводородов с помощью микроорганизмов. Известен способа получения внеклеточных углеводородов микроорганизмами, например образование метаногенами газообразного углеводорода - метана из СО2 и Н2.
Известен способ получения биогаза из жидких удобрений анаэробной ферментацией органических веществ.
Известен способ получения метана анаэробной ферментацией органических материалов.
Кроме того, известен способ получения углеводородных смесей С2-С5аэробным культивированием грибов дрожжей, бактерий и актиномицетов с использованием различных биомасс.
Прототипом предлагаемого изобретения является способ получения метана из СО2 и Н2 метанобразующими бактериями в процессе анаэробной деструкции органических соединений.
Однако в заявке не указана среда, на которой выращиваются бактерии. По-видимому, используется среда, принятая для культивирования метанобразующих бактерий, содержащая, например, минеральные соли, г/л: КН2РО4 1,0; NH4Cl 0,75; К2НРО4 2,0; MgCl2˙6Н2O) 0,02; СОCl2˙6H2O 0,01; NaHCO3 2,0; СаСО3 2,0, а также соли меди. В качестве источника углерода используется ацетат. Микроорганизмы культивируют в анаэробных условиях в присутствии водорода.
Данный способ выбран в качестве прототипа на основании того, что метаногены культивируются в анаэробных условиях на среде, содержащей органическую добавку и с использованием тех же газов (СО2 и Н2).
Недостатком данного способа является образование только одного газообразного углеводорода.
Целью изобретения является получение внеклеточных жидких углеводородов с большей длиной цепи.
Цель достигается тем, что выращивают бактерии в анаэробных условиях в присутствии водорода и двуокиси углерода на питательной среде, содержащей минеральные соли и органическую добавку. В качестве микроорганизмов используют штамм бактерий Desulfovibrio desulfuricans ВКМ В-1799, а в качестве органической добавки питательная среда содержит лактат кальция и дрожжевой экстракт. Газовая среда выращивания микроорганизмов содержит двуокись углерода и водород в соотношении 1:20.
На фиг.1 показана зависимость роста бактерий и накопления внеклеточных жидких углеводородов, где I - рост и накопление биомассы бактериями Desulfovibrio desulfuricans штамм ВКМ В-1799; II - то же, штамм ВМК В-1388; III - внеклеточные углеводороды D. desulfuricans штамм ВКМ В-1799; IУ - то же, штамм ВКМ В-1388. На фиг.2 показан спектр получаемых внеклеточных углеводородов.
В табл.1 показаны данные накопления внеклеточных жидких углеводородов в культуральной жидкости в зависимости от времени культивирования бактерий.
В табл. 2 - биосинтез углеводородов сульфатредуцирующими бактериями в зависимости от соотношения молекулярного водорода и двуокиси углерода в газовой фазе.
Доказательством критерия существенности отличия может служить следующее: отсутствие сведений в научной и патентной литературе о получении жидких углеводородов анаэробными микроорганизмами, отсутствие в литературе и производственной практике сведений о данном направлении развития науки, в литературе и производственной практике высказывались мнения в потребности такого изобретения.
Способ осуществляется следующим образом.
В качестве инокулята используют двухсуточную культуру бактерий, разведенную в 10-4 - 10-5. Ее засевают в пенициллиновые флаконы с 5 мл питательной среды традиционного состава, принятой для культивирования сульфатредуцирующих бактерий в отсутствии ионов SO4-2 как акцептора электронов, например, г/л: КН2РО4 0,5; NH4Cl 1,0; СаСl2 ˙2H2O 0,1; MgCl2˙7H2O 1,6; лактат кальция 3,5; дрожжевой экстракт в виде 1-ного раствора HCl 0,5; вода водопроводная 1000 мл. Отсутствие в питательной среде значительных количеств сульфатов способствует увеличению (в 5 раз) образования внеклеточных жидких углеводородов сульфатредуцирующими бактериями. Использование органического субстрата в виде лактата кальция обеспечивает активное окисление данного соединения, способствуя росту бактерий. В нашем варианте данные получения экспериментальным путем и соответствуют оптимальным значениям компонентов питательной среды. Однако допустимые количественные изменения состава среды составляют, г/л: КН2РО4 0,4-0,6; NH4Cl 0,9-1,1; СаCl2˙2H2O 0,1-0,2; MgCl2 ˙7H2О 1,5-1,7; лактат кальция 3,4-3,6; дрожжевой экстракт в виде 1-ного водного раствора 0,9-1,1; FeSO4 ˙7H2O в виде 5%-ного раствора в 1%-ном растворе HCl 0,4-0,6; водопроводная вода 1000 мл. При этом эти пределы обеспечивают нормальные условия жизнедеятельности сульфатредуцирующих бактерий.
Перед посевом бактерий проводят стерилизацию среды. Основную среду стерилизуют при 1 атм в течение 20 мин. После стерилизации к основной среде добавляют дрожжевой экстракт, простерилизованный при 0,5 атм 20 мин и FeSO4 ˙7Н2О, простерилизованный при 1 атм 20 мин. рН среды доводят стерильным 20% -ным раствором NaOH до оптимального значения для роста сульфатредуцирующих бактерий 7,2-7,4.
Анаэробные условия достигаются кипячением и быстрым охлаждением питательной среды, а также добавлением восстановителей до начальной Eh среды = - 230 мВ. В качестве восстановителя чаще используют сульфид натрия, который стерилизуют при 0,5 атм 20 мин и добавляют по каплям перед посевом бактерий до слабого посерения среды.
После посева бактерий воздух из флаконов откачивают с помощью вакуумного насоса типа МPW-5, многократно через бактериальный фильтр промывают газовой смесью, состоящей из двуокиси углерода и молекулярного водорода (отношение 1:20 лучшее по выходу жидких углеводородов, см. табл.2).
В работе используют углекислоту из баллонов. Молекулярный водород получают с помощью генератора водорода типа СТС-2. Контроль состава и чистоты газовых смесей осуществляют хроматографически на газохроме-3101.
Заполненные газовой смесью флаконы помещают в термостат при 30-32оС, оптимальной температуре для данного вида сульфатредуцирующих бактерий.
Об интенсивности динамики накопления биомассы судят по приросту белка, который определяют по модифицированному методу Лоури, и увеличению количества сероводорода (см. фиг.1).
Углеводороды из культуральной жидкости извлекают традиционным растворителем углеводородов - очищенным хлороформом, после отделения клеток бактерий при 7000 g и проверки супернатанта на отсутствие белка (для доказательства наличия влеклеточных углеводородов). Для этого к 5 мл культуральной жидкости добавляют 0,5 мл хлороформа, встряхивают в течение 10 мин и оставляют на 1 сут при комнатной температуре для более полного извлечения углеводородов. Состав и количество синтезированных бактериями углеводородов определяют методом газожидкостной хроматографии на Chrom = 5.
Следует отметить, что исходное количество углеводородов в питательной среде после внесения дрожжевого экстракта и культуры сульфатредуцирующих бактерий составляло 1,5-2,0 мг/л. Увеличение внеклеточных углеводородов при росте сульфатредуцирующих бактерий в атмосфере двуокиси углерода и молекулярного водорода происходит параллельно с нарастанием биомассы, т.е. в период максимальной физиологической активности сульфатредуцирующих бактерий, а не является следствием разрушения клеток. Количество внеклеточных углеводородов достигает максимума в начале стационарной фазы роста бактерий и с прекращением накопления биомассы не увеличивается (см. табл.1).
Полученные углеводороды представляют собой смесь алифатических углеводородов как нормального, так и изостроения с длиной цепи С14-С25(см. фиг. 2). Количество синтезируемых углеводородов достигает ≈30 мг/л.
Выход углеводородов при изменении соотношения СО2 и Н2 в газовой фазе (см. табл. 2) соответствует тому, что максимальный выход углеводородов 31,5±0,1 мг/л достигается при соотношении Н2:СО2 = 20:1. Данный способ получения жидких углеводородов осуществлялся с использованием штаммов ВКМ В-1799, ВКМ В-1388 вида Desulfovibrio desulfuricans. Не вызывает сомнения, что все бактерии вида Desulfovibrio desulfuricans способны образовывать внеклеточные жидкие углеводороды на питательной среде, содержащей минеральные соли и лактат кальция, в атмосфере двуокиси углерода (СО2) и молекулярного водорода (Н2) в виду того, что они имеют общий генотип и обладают ярко выраженным фенотипическим сходством, лишь с разницей по времени культивирования бактерий.
Обнаруженная способность сульфатредуцирующих бактерий Desulfovibrio desulfuricans продуцировать внеклеточные углеводороды при росте в гетеротрофных условиях в атмосфере двуокиси углерода и молекулярного водорода, свидетельствует о потенциальной возможности расширения практического использования биосинтетических особенностей этих бактерий. При этом особого внимания заслуживает образование внеклеточных углеводородов сульфатредуцирующими бактериями в связи с вопросом биогенного происхождения нефти.
название | год | авторы | номер документа |
---|---|---|---|
Питательная среда для культивирования сульфатредуцирующих бактерий рода Desulfovibrio spp. и способ ее получения | 2023 |
|
RU2820701C1 |
Способ диагностики Desulfovibrio spp. при нарушениях микробиоценоза желудочно-кишечного тракта | 2023 |
|
RU2821995C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO DESULFURICANS, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1991 |
|
RU2017814C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. "ЭГАСТ-4", ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1998 |
|
RU2135422C1 |
Способ определения показателя антибиотикорезистентности бактерий рода Desulfovibrio spp. | 2023 |
|
RU2821994C1 |
ШТАММ БАКТЕРИЙ Desulfovibrio oxamicus, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФАТОВ И ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2007 |
|
RU2355756C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO VULGARIS "ЭГАСТ-5", ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1999 |
|
RU2150503C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. VK-9 ДЛЯ ОЧИСТКИ КИСЛЫХ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2015 |
|
RU2603249C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДОВ КОБАЛЬТА С ИСПОЛЬЗОВАНИЕМ ШТАММА БАКТЕРИИ DESULFOVIBRIO SP. | 2016 |
|
RU2637389C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO BAARSII "ЭГАСТ-6", ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1999 |
|
RU2150502C1 |
Использование: получение жидких углеводородов. Сущность: штамм сульфат-редуцирующих бактерий выращивают в анаэробном режиме в присутствии H2 и CO2 на традиционной питательной среде, используя при этом в качестве органической добавки лактат кальция и дрожжевой экстракт. Соотношение двуокиси углерода и водорода поддерживают в соотношении 1 : 20. 1 з.п.ф-лы, 2 табл., 2 ил.
Кипятильник для воды | 1921 |
|
SU5A1 |
Заявка Японии N 6083587, кл | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Авторы
Даты
1995-01-27—Публикация
1991-02-01—Подача