Изобретение относится к способу получения сульфидов кобальта с использованием сульфатредуцирующих бактерий (СРВ).
Предложенный способ можно использовать для получения чистых сульфидов кобальта из сточных вод, содержащих ионы металлов, включая кобальт, и жидких отходов добывающих и перерабатывающих металлургических предприятий. При применении предложенного способа возможно избирательное осаждение кобальта в виде сульфидов.
Сульфид кобальта CoS встречается в природе в виде минерала джайпурита, представляющего собой черные (или серо-стальные) гексагональные кристаллы. Применяют как реагент для получения катализатора гидрирования и изомеризации. Сульфиды кобальта находят широкое применение из-за их каталитических, электрических и магнитных свойств.
Сульфиды кобальта получают взаимодействием элементов при нагревании, нагреванием серы с СоО, восстановлением CoSO4 оксидом углерода(II) или водородом, углем, серой. Известен способ осаждения кобальта из сульфатных растворов в виде сульфидов (RU 2328537). Способ включает введение серосодержащего реагента в раствор и нагрев при температуре 130-170°С.
При другом способе осаждение сульфида кобальта из продуктивных растворов сернокислотного выщелачивания при атмосферном давлении включает варьирование pH и добавление сульфидсодержащего компонента (RU 2281978). При этом до осаждения сульфидов никеля и кобальта проводят предварительную нейтрализацию пульпы и восстановление Fe(III) до Fe(II) с одновременным осаждением примесей в виде сульфидов с последующей дополнительной нейтрализацией и фильтрованием осадка.
Недостатками химических способов получения сульфидов кобальта является большая энергозатратность производства, необходимость использования специального, дорогостоящего оборудования, а также следует учитывать и вред, наносимый окружающей среде химическим производством.
Известно об использовании сульфатредуцирующих бактерий для очистки сточных вод от ионов тяжелых металлов. Биогенный сероводород в процессе биохимической очистки связывает ионы тяжелых металлов в нерастворимые сульфиды. В 1950 году Миллер Е.Дж. и Харрисон Дж.С. опубликовали в «Nature» статью об образовании сульфидов металлов, в том числе и кобальта, при использовании сульфатредуцирующих бактерий рода Desulfovibrio. Образование сульфида кобальта происходит при нейтральных значениях среды.
Наиболее близким по сущности и достигаемому результату к заявленному изобретению является способ получения нанокристаллических сульфидов кобальта сульфатредуцирующими бактериями Desulfosporosinus auripigmenti (Sitte J. et al. Geomicrobiology Journal (2013) 30, 36-47). В эксперименте по способу-прототипу получали сульфид кобальта пентландит (Co9S8) из 5 тМ (295 мг/л) и 10 тМ (589 мг/л) растворов CoCl2 в течение 5 недель при pH 6,2.
Недостатком данного способа является длительный срок образования сульфидов кобальта и невозможность его осуществления при более кислых условиях среды, что существенно ограничивает его использование в биотехнологиях.
Задачей изобретения является разработка способа получения сульфидов кобальта, не содержащих примеси других сульфидов металлов, из растворов с высоким содержанием ионов кобальта (до 2000 мг/л) при повышенной кислотности среды.
Поставленная задача решается путем внесения сульфатредуцирующих бактерий Desulfovibrio sp. ED-20 в синтетическую среду, моделирующую сточные воды, содержащую металлы, с добавлением питательных веществ, включающих в себя растворы витаминов, солей, кофакторов, лактата, сульфида натрия с последующим культивированием в термостате и высушиванием. В отличие от прототипа, используются вновь полученный высокоустойчивый к ионам кобальта штамм бактерий Desulfovibrio sp. ED-20, культивирование проводят при температуре 28°С в течение 10 суток. При этом образуется 2 вида сульфидов кобальта: CoS, джайпурит и Co9S8, кобальтпентландит. Осадок, содержащий кристаллы сульфидов кобальта, собирают со дна емкости и высушивают.
Сущность изобретения поясняется фиг.1.
На фиг. 1 представлена дифрактограмма осадков, образованных чистой культурой Desulfovibrio sp. ED-20 в присутствии ионов кобальта в концентрации 200 мг/л в течение 10 суток. Обозначения на дифрактограмме: Jp - CoS, джайпурит (Jaipurite), Со - Co9S8, кобальтпентландит (Cobaltpentlandite).
Культивирование проводят в синтетической среде (таблица 1) с внесением питательных веществ, стимулирующих рост бактерий. В синтетическую среду перед посевом культуры бактерий вносятся питательные вещества и двухвалентный кобальт. Состав питательных веществ и последовательность их внесения указаны в таблице 2. Все питательные вещества, кроме витаминов, автоклавируют при 1 атм 30 мин. Витамины стерилизуют фильтрованием с помощью бактериального фильтра (0,20 мкм).
Посев проводят в стерильные емкости, объем инокулята (культуры СРВ) в количестве 10% от объема емкости. Емкости с инокулятом и внесенными питательными веществами заполняют до верха. Кислотность среды доводят раствором H2SO4 до рН 5,5. Емкости закрывают алюминиевыми колпачками, запечатывают и помещают в термостат при температуре 28°C. Образование кристаллов сульфидов кобальта происходит на дне емкости. После культивирования осадок собирают со дна и высушивают на воздухе.
Штамм Desulfovibrio sp. ED-20 депонирован Всероссийской коллекцией микроорганизмов (ВКМ) Института биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ) под регистрационным номером ВКМ B-3048D. Анализ нуклеотидной последовательности гена 16S рРНК штамма ED-20 показал, что предлагаемый новый штамм принадлежит к роду Desulfovibrio.
Используемый штамм Desulfovibrio sp.ED-20 не известен в науке и технике, поэтому свойства, которые он проявляет, являются новыми.
Полученный штамм характеризуется следующими признаками.
Культурально-морфологические признаки патентуемого штамма определяют при его культивировании на стандартной пресноводной среде Видделя (Widdel, Bak, 1992). Температура культивирования штамма составляет +28°С. Выращивание проводят в течение 3-4 суток без ионов металлов, 8-10 суток с добавлением ионов металлов в концентрации 200 мг/л и более.
Родовое и видовое название штамма - штамм бактерий Desulfovibrio sp. ED-20.
Происхождение - выделен из слоистых матов с деревянной конструкцией, затопленной водой на выходе из штольни, Акатуйское месторождение полиметаллических руд (Забайкальский край).
Морфологическая характеристика - форма клеток - вибрион, размером 2,3×0,6 мкм.
Спорообразование - нет.
Реакция по Граму - отрицательная.
Подвижность клеток - подвижные.
Физиологическая характеристика - отношение к кислороду анаэробные.
В качестве субстрата для роста используют лактат. Лактат метаболизируют по пути неполного окисления с образованием ацетата. Штамм устойчив к ионам кобальта (до 2000 мг). Штамм способен к росту при значениях pH от 3,35 до 8,4. Оптимальный pH среды 4,5-5,5.
Условия культивирования - пресноводная среда Видделя.
Условия хранения - сохраняется путем пересевов на среде культивирования или лиофилизированным.
Пример осуществления изобретения в лабораторных условиях приведен ниже.
Пример 1.
Чистую культуру СРВ Desulfovibrio sp. ED-20 ВКМ B-3048D культивировали на синтетической среде, содержащей ионы кобальта в концентрации 200 мг/л.
Посев проводили в стерильном ламинарном шкафу, который перед этим дезинфицировали ультрафиолетом 30 минут. Перед посевом синтетическую среду (таблица 1) доводили до кипения и затем быстро охлаждали под струей холодной воды для удаления растворенного кислорода. В охлажденную до комнатной температуры среду вносили питательные вещества (таблица 2) (в расчете на 1 л) в следующей последовательности: витамины (2 мл), раствор солей (10 мл), раствор кофакторов (1 мл), органический субстрат - лактат (1,6 мл), H2SO4 (при внесении pH доводится до 5,5), H2S (2 мл). Перед внесением сероводорода добавляли маточный раствор кобальта в количестве 4 мл на 1 литр синтетической среды.
Во флаконы на 120 мл вносили около 50 мл синтетической среды с внесенными в нее добавками и 10 мл инокулята (культуры бактерий), после чего доливали средой до верха. Резиновые пробки притирали к краям флаконов с помощью стерильной иглы, что уменьшало вероятность проникновения кислорода воздуха. В конце посева флаконы закрывали алюминиевыми колпачками, запечатывали флакон закаточной машинкой и помещали термостат при температуре 28°С.
На среде с ионами кобальта в концентрации 200 мг/л за 10 суток в среде кобальт осаждается в виде сульфида. Образованный осадок собирали со дна флакона и высушивали на воздухе. Масса образовавшегося осадка - 0,28 г.
Кристаллическую фазу осадков определяли методом рентгенофазового анализа на дифрактометре Shimadzu XRD 6000. Было показано образование сульфидов кобальта джайпурита CoS и кобальтпентландита Co9S8 в течение 10 суток (фиг. 1). В контрольных осадках, полученных при инкубировании без добавления инокулята, кристаллической фазы не наблюдали, основными элементами были кобальт и кислород.
Заявленный способ пригоден для получения сульфида кобальта с использованием в качестве синтетической среды сточных вод и жидких отходов добывающих и перерабатывающих металлургических предприятий.
Техническим результатом изобретения является обеспечение возможности быстрой биохимической очистки высококонцентрированных сточных вод с образованием сульфидов кобальта при кислых условиях среды.
название | год | авторы | номер документа |
---|---|---|---|
ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2013 |
|
RU2542402C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. VK-9 ДЛЯ ОЧИСТКИ КИСЛЫХ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2015 |
|
RU2603249C1 |
АЦИДОФИЛЬНЫЙ ШТАММ DESULFOSPOROSINUS SP. ДЛЯ ОЧИСТКИ ЗАГРЯЗНЕННЫХ ЭКОСИСТЕМ С ЭКСТРЕМАЛЬНО КИСЛЫМИ ЗНАЧЕНИЯМИ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2015 |
|
RU2603277C1 |
СПОСОБ ПОЛУЧЕНИЯ МИЛЛЕРИТА С ИСПОЛЬЗОВАНИЕМ СУЛЬФАТРЕДУЦИРУЮЩИХ БАКТЕРИЙ | 2012 |
|
RU2528777C2 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДА КАДМИЯ С ИСПОЛЬЗОВАНИЕМ СУЛЬФАТРЕДУЦИРУЮЩИХ БАКТЕРИЙ | 2013 |
|
RU2526456C1 |
СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОПИРИТА С ИСПОЛЬЗОВАНИЕМ АЦИДОТОЛЕРАНТНЫХ СУЛЬФАТРЕДУЦИРУЮЩИХ БАКТЕРИЙ, УСТОЙЧИВЫХ К МЕДИ | 2012 |
|
RU2482062C1 |
СПОСОБ ПОЛУЧЕНИЯ КОВЕЛЛИТА С ИСПОЛЬЗОВАНИЕМ СУЛЬФАТРЕДУЦИРУЮЩИХ БАКТЕРИЙ, УСТОЙЧИВЫХ К МЕДИ | 2010 |
|
RU2426783C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO DESULFURICANS, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1991 |
|
RU2017814C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. "ЭГАСТ-4", ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1998 |
|
RU2135422C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ | 1991 |
|
RU2027760C1 |
Изобретение относится к биотехнологии. Способ предусматривает помещение сульфатредуцирующих бактерий в синтетическую среду, содержащую металлы, с добавлением питательных веществ, включающих в себя растворы витаминов, солей, кофакторов, лактата, сульфида натрия, с дальнейшим культивированием в течение 10 суток при температуре 28ºС, собранный со дна емкости осадок, содержащий кристаллы сульфидов кобальта, и высушивают. При этом в качестве сульфатредуцирующих бактерий используют Desulfovibrio sp. ED-20, устойчивый к повышенным концентрациям ионов кобальта и депонированный во Всероссийской коллекции микроорганизмов Института биохимии и физиологии под регистрационным номером ВКМ В-3048D. Изобретение позволяет сократить сроки биохимической очистки высококонцентрированных сточных вод. 1 ил., 2 табл., 1 пр.
Способ получения сульфидов кобальта путем помещения сульфатредуцирующих бактерий в синтетическую среду, содержащую металлы, с добавлением питательных веществ, включающих растворы витаминов, солей, кофакторов, лактата, сульфида натрия, с последующим культивированием, отличающийся тем, что при культивировании используют сульфатредуцирующие бактерии Desulfovibrio sp. ВКМ B-3048D, устойчивые к повышенным концентрациям ионов кобальта, культивирование проводят в течение 10 суток при температуре 28°С, собранный со дна емкости осадок, содержащий кристаллы сульфидов кобальта, высушивают.
SITTE J., POLLOK K., LANGENHORST F | |||
et.al., Nanocrystalline nickel and cobalt sulfides formed by a heavy metal-tolerant, sulfate-reducing enrichment culture, Geomicrobiology journal, 2013, v.30, N 1, p | |||
Коридорная многокамерная вагонеточная углевыжигательная печь | 1921 |
|
SU36A1 |
КУЗЯКИНА Т.И., ХАЙНАСОВА Т.Е | |||
и др | |||
Биотехнология извлечения металлов из сульфидных руд, Вестник Краунц | |||
Науки о земле, 2008, N2, вып | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Аппарат, предназначенный для летания | 0 |
|
SU76A1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. СВБ-2, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2004 |
|
RU2269571C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO BAARSII "ЭГАСТ-6", ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1999 |
|
RU2150502C1 |
ШТАММ БАКТЕРИЙ DESULFOVIBRIO VULGARIS ЭГАСТ-1, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 1996 |
|
RU2128219C1 |
ШТАММ БАКТЕРИЙ Desulfovibrio oxamicus, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФАТОВ И ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | 2007 |
|
RU2355756C1 |
Авторы
Даты
2017-12-04—Публикация
2016-10-12—Подача