Изобретение относится к технологии производства конструкционных материалов из карбида кремния.
Традиционным методом получения высокотвердых и огнеупорных карбидных изделий является изготовление деталей и самосвязанного карбида кремния [1 и 2] Однако, несмотря на разнообразие модификаций метода, технологические особенности формования заготовок из порошковых сырьевых материалов сильно ограничивают возможности получения деталей сложной формы, в частности тонкостенных.
В тех случаях, когда необходимо изготовить тонкие панели из карбидокремниевого материала, в которых отношение габаритного размера к толщине достигает 100 и более, применяют способ [3] Этот способ состоит в том, что первоначально изготавливается углепластиковая заготовка, в которой наполнителем является углеволокнит (углеродная ткань, углеродный войлок и т.п.), а связующим какая-либо термореактивная смола (фенол-формальдегидная, эпоксидная и т.п.). Углепластиковая заготовка подвергается термообработке в вакууме или в восстановительной среде при температурах около 1000оС (обжиг, карбонизация), после чего крабонизированная углепластиковая заготовка в вакууме или в инертной среде пропитывается жидким кремнием (силицируется) по одной из принятых схем (в кремниевой засыпке, в кремнийсодержащей обмазке, дождеванием из тиглей с расплавом кремния и т.п.). В результате взаимодействия жидкого кремния с углеродом образуется карбид кремния.
Особенностью материала, получаемого описанным выше способом, ограничивающей область его применения, является значительное (не менее 40 об.) содержание остаточного углерода. Это приводит, во-первых, к снижению модуля упругости до величин не более 200 ГПа, что недостаточно при создании особо жестких конструкций. Во-вторых, наличие значительного количества остаточного углерода снижает окислительную стойкость материала при высоких температурах (800-1600оС) в газовых средах, содержащих кислород. В этих условиях в результате выгорания углерода материал разупрочняется и детали быстро выходят из строя.
Как показал проведенный анализ причиной высокого содержания остаточного углерода в материале является образование в карбонизованной заготовке крупных, по сравнению с диаметром волокна включений кокса связующего и алгормератов кокса с волокном. Эти частицы (100 мкм) карбидизируются только в поверхностном слое, а их внутренняя часть оказывается недоступной для жидкого кремния.
Изобретением решается задача получения при силицировании материала с высоким (не менее 75 об.) содержанием карбида кремния за счет изготовления бескоксового углеволокнистого полуфабриката, обладающего достаточной технологической прочностью, позволяющей произвести с заготовкой последующие технологические операции, включая жидкофазное силицирование.
Сущность способа состоит в том, что набор слоев углеволокнита прессуется в сухую до кажущейся плотности 850-1050 кг/м3. Для сохранения этой плотности после прессования и придания получаемому полуфабрикату технологической прочности материал прессуют при температурах, превышающих максимальную температуру предыдущей термообработки волокнита и не ниже температуры плавления кремния ( ≈ 1415оС). После этого заготовку силицируют одним из известных способов.
Выбор интервала значений кажущейся плотности прессованной заготовки углеволокнита обусловлен двумя перечисленными ниже факторами. При плотности ниже 850 кг/м3 углеволокнистая заготовка имеет недостаточную технологическую прочность, а получаемый и нее карбидный материал имеет высокую прочность и пониженный модуль упругости.
При плотности выше 1050 кг/м3 резко возрастает содержание остаточного углерода, падает модуль упругости и снижается стойкость в окислительных газовых средах.
Выбор температуры прессования выше максимальной температуры предыдущей термообработки углеволокнита позволяет за счет необратимых формоизменений волокон устранить упругое расширение заготовки после снятия давления и зафиксировать полученную плотность полуфабриката и механическое зацепление волокон соседних слоев. Последнее обстоятельство обеспечивает необходимую технологическую прочность.
В том случае, когда исходный материал имеет сравнительно низкую температуру термообработки, например≅ 1000оС, температура прессования должна быть не ниже температуры плавления кремния ( 1415оС) для того, чтобы при нагреве в начальной стадии процесса силицирования не происходили формоизменения заготовки до ее пропитки кремнием.
Примеры реализации способа.
Использовались углеволокнистые материалы марки, свойства которых приведены в табл.1.
Формование пакетов углеволокнитов проводилось на прессе "горячего" прессования, в котором нагрев до требуемой температуры осуществлялся прямым пропусканием электрического тока через графитовую оснастку, а начальное удельное давление прессования изменялось от 1 до 5 МПа в зависимости от углеволокнита.
В проведенных экспериментах было установлено, что изменение температуры прессования карбонизованных материалов в интервале 1500-2100оС не сказывается практически на свойствах полуфабриката и карбидного материала. Выбор сырья также оказался несущественным, но более экономичным процессы с карбонизованными, а не с графитированными (как ТГН-2М) углеволокнистыми материалами.
Это позволило большую часть экспериментов выполнить на дешевой ткани УУТ-2СТ при температуре прессования 1500-1600оС.
Наиболее существенным параметром для бескоксовых углеволокнистых полуфабрикатов оказалась их кажущаяся плотность.
Карбидизация полуфабрикатов осуществлялась в электрических вакуумных печах методом силицирования в кремниевой засыпке. При этом использовались режимы: (а, б) с выпариванием избыточного кремния и полным заполнением пористости избыточным кремнием соответственно.
Результаты силицирования приведены в табл.2.
При силицировании по режиму (а) объемная доля остаточного кремния в материале не превышала 1 об.
Данные, приведенные в виде дроби во втором и шестом столбцах, соответствуют режиму (а) числитель и режиму (б) знаменатель.
Потеря массы (седьмой столбец) определялась при выдержке пористого образца на воздухе при 1000оС до стабилизации его массы. Эта величина соответствует количеству остаточного свободного углерода в материале.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ УГЛЕРОД-КАРБИДОКРЕМНИЕВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И УГЛЕРОД-КАРБИДОКРЕМНИЕВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 1992 |
|
RU2084425C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 1992 |
|
RU2034813C1 |
Углеродкерамический волокнисто-армированный композиционный материал и способ его получения | 2017 |
|
RU2684538C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ УГЛЕРОДКЕРАМИЧЕСКОГО МАТЕРИАЛА | 2006 |
|
RU2345972C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ УГЛЕРОДКЕРАМИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2014 |
|
RU2572851C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ УГЛЕРОДКЕРАМИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2006 |
|
RU2351572C2 |
Способ изготовления двумерно армированного углерод-карбидного композиционного материала на основе углеродного волокнистого наполнителя со смешанной углерод-карбидной матрицей | 2021 |
|
RU2780174C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОЙ ОСНОВЫ ПОД СИЛИЦИРОВАНИЕ | 1994 |
|
RU2087452C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА МАТЕРИАЛАХ И ИЗДЕЛИЯХ С УГЛЕРОДСОДЕРЖАЩЕЙ ОСНОВОЙ ДЛЯ ЭКСПЛУАТАЦИИ В ВЫСОКОСКОРОСТНЫХ СТРУЯХ ОКИСЛИТЕЛЯ | 2015 |
|
RU2613220C1 |
КОМПОЗИЦИЯ ТОНКОСТЕННЫХ ТРУБЧАТЫХ ЭЛЕМЕНТОВ И СПОСОБ ПОЛУЧЕНИЯ ТОНКОСТЕННЫХ ТРУБЧАТЫХ ЭЛЕМЕНТОВ | 2014 |
|
RU2559965C1 |
Изобретение относится к технологии производства конструкционных материалов из карбида кремния. Сущность изобретения: способ включает жидкофазное силицирование углеволокнистой заготовки спрессованной всухую (без коксующегося связующего) до плотностей 850-1050 кг/м3 при температуре, превышающей , как максимальную температуру предыдущей термообработки углеволокнистого материала, так и температуру плавления кремния. Полученный материал имеет модуль упругости 200-360 МПа. 2 табл.
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ИЗ КАРБИДА КРЕМНИЯ, включающий послойную укладку углеволокнистого материала с последующим прессованием заготовки и жидкофазным силицированием, отличающийся тем, что прессование заготовки производят всухую до величины кажущейся плотности 850-1050 кг/м3 при температуре, превышающей максимальную температуру предшествующей термообработки углеволокнистого материала и температуру плавления кремния.
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Fitzer E., Cadow R.//Amer | |||
Cer | |||
Soc | |||
Пневматический водоподъемный аппарат-двигатель | 1917 |
|
SU1986A1 |
Авторы
Даты
1995-05-10—Публикация
1992-07-21—Подача