СПОСОБ ПОЛУЧЕНИЯ ГАЗОВОЙ СМЕСИ, СОДЕРЖАЩЕЙ АРСИН ИЛИ ФОСФИН, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 1995 года по МПК C01B6/06 C01B25/06 

Описание патента на изобретение RU2036832C1

Изобретение относится к области получения особочистых веществ для микроэлектроники и конкретно касается способа получения смесей высокочистого арсина (фосфина) с газами-носителями (водородом, аргоном, гелием и т.д.).

Наиболее распространенными способами получения арсина (фосфина) являются восстановление соединений мышьяка (фосфата) водородом или разложение арсенидов (фосфидов) металлов водой или кислотами.

Наиболее близким техническим решением к предлагаемому является способ получения арсина путем гидролиза арсенида магния (фосфида) водой, который используют в СССР в промышленном масштабе (арсин-концентрат ТУ 6-02-7-178-84, фосфин-концентрат ТУ-6-02-7-177-84) (1).

Недостатками этого способа является низкая чистота полученного арсина, в частности по содержанию паров воды и других летучих примесей.

Известно устройство для получения газовой смеси, содержащей арсин или фосфин, состоящее из колонки, заполненной порошком исходного вещества, средств для подачи исходного газа и газа-носителя и вывода получаемого продукта арсина или фосфина (2).

Недостатком данного устройства является необходимость точной дозировки исходного газа и газа-носителя для поддержания заданной концентрации арсина или фосфина в продукте.

Однако эти способы не предусматривают какую-либо очистку арсина непосредственно в процессе его получения. В настоящее время актуальной задачей является разработка экологически безопасных способов и устройства для получения газовых смесей арсина(фосфина) непосредственно в месте его потребления с массовым расходом и концентрацией, необходимыми потребителю.

Основными требованиями к такому способу и устройству являются максимально возможная чистота получаемого арсина (фосфина) с целью устранения или уменьшения последующих операций его очистки; минимальное количество единовременно находящегося в устройстве ядовитого арсина (фосфина); высокая стабильность концентрации арсина (фосфина) в газовой смеси не хуже 0,25%
Фактически речь идет о создании экологически безопасного функционального аналога, обычного 40 л баллона, содержащего газовую смесь арсина, которые в настоящее время и используют потребители. Если 40 л баллона содержит в зависимости от давления несколько кубических метров ядовитого газа, то его экологическая безопасность очевидна.

Для устранения недостатков известных способов и устройства в известном способе, включающем гидролиз арсенидов (фосфидов) металлов в среде защитного газа (газоносителя) реакцию гидролиза осуществляют пропусканием газа, насыщенного водяным паром, через слой порошка арсенидов (фосфидов), достаточный для требуемой степени удаления паров воды и других примесей, причем газ может быть насыщен водяным паром при выбранной температуре.

Известное устройство, включающее реактор для проведения гидролиза арсенидов (фосфидов) металлов, дополнительно снабжено термостатированным испарителем воды, а реактор выполнен в виде колонки, заполненной порошком арсенидов (фосфидов) размером более 0,1 мм, причем колонка может быть выполнена секционной с числом отдельных секций не менее двух с возможностью их переключения противоточно направлению потока газа, причем высота слоя арсенида (фосфида) в каждой секции должна обеспечивать требуемое поглощение паров воды и выбирается из условия H>nh, где h высота слоя, обеспечивающая уменьшение содержания паров воды в газе в 2 раза (n>1).

Устройство работает следующим образом.

Газ-носитель необходимой чистоты из баллона 1 (см. чертеж) через средства подачи (вентили, регулятор давления и т.д.) 2 поступает в испаритель 3, находящийся в термостате 4. Из испарителя 3 по обогреваемым трубкам 5 насыщенный водяным паром газ поступает последовательно в колонки 6 и 7 с арсенидом или фосфидом магния, а затем на сорбционную колонку 8, где осуществляется глубокая доочистка газовой смеси. К потребителю газовая смесь подается через средства вывода 9 (вентили, регулятор расхода, манометр и т.п.).

Большая поверхность контакта вода-газ в испарителе и его конструкция обеспечивают с точностью до 0,2% равновесное насыщение газа парами воды. Поток газа пропускается через 2 секции колонки до тех пор, пока арсенид металла в первой секции не гидролизуется на 95-98% при этом высота слоя арсенида во второй секции обеспечивает понижение концентрации паров в газовой смеси арсина до требуемой точки росы ( ≈ 70оС). Затем процесс останавливается, первая колонка отключается, вторая колонка занимает место первой, а на место второй подключается новая колонка, заполненная свежезагруженным арсенидом (фосфидом) металла.

Существенными признаками предлагаемого способа и устройства являются
высокая чистота получаемого арсина (фосфина), которая обеспечивается поглощением паров воды слоем арсенида (фосфида) металла до требуемой потребителем степени, например, до точки росы не хуже 70оС, а также химико-физической сорбцией, примесей как в слое гидрата металла, образующегося в результате гидролиза, так и в слое непрореагировавшего арсенида (фосфида) металла.

Высота слоя арсенида (фосфида) металла Н ≥ 3h, где h высота слоя, обеспечивающая уменьшение паров воды в 2 раза, по экспериментальным данным обеспечивает требуемую чистоту арсина как по концентрации паров воды, так и по содержанию других примесей и углеводородов. Концентрация арсина (фосфина) в газовой смеси определяется только концентрацией паров воды, которая легко поддерживается ультратермостатом с точностью ± 0,05-0,1оС, чем обеспечивается высокая стабильность концентрации арсина (фосфина) во время процесса.

Количество арсина (фосфина) единовременно находящееся в устройстве минимальное, поскольку арсин (фосфин) находится только в слое арсенида (фосфида) металла.

Экспериментально найдено, что при размере частиц арсенида (фосфида) металла более 0,1 мм не происходит забивки слоя в колонке при образовании гидрата металла, а секционное выполнение колонки с числом отдельных секций не менее двух обеспечивает более экономичное использование арсенида (фосфида) металла при сохранении требуемой чистоты полученного арсина (фосфина).

П р и м е р. Для получения арсина было смонтировано устройство, содержащее 40 л баллон с водородом, снабженный регулятором давления, диффузионную газоочистку водорода ОДВ-4, электронный регулятор расхода газа типа РРГ, испаритель, выполненный из нержавстали с площадью поверхности воды 0,2 м2, который нагревался с помощью ультратермостата, и двух секционной колонки, также выполненной из нержавстали. Каждая секция имела диаметр 40 мм и общую высоту 0,6 м при высоте слоя арсенида магния 0,5 м.

Порошок арсенида магния имел размеры 0,5-2 мм. Газовая система была собрана из сварных трубок из нержавстали диаметром 6 мм и снабжена сильфонной запорно-регулирующей арматурой (вентилями, клапанами и т.д.).

После трехкратной вакуумно-водородной промывки системы (без испарителя) получали арсин при температуре испарителя + 32( ± 0,1)оС и расходе газа 50 ( ± 0,02) см3/с. В полученной газовой смеси равномерность массового расхода арсина в течение 6 ч непрерывной работы составили ± 0,5 отн. Содержание влаги соответствовало точке росы 85оС, концентрация основных примесей составила, ат. сера, селен и теллур (в сумме) 10-5; кремний 2 ˙10-5; тяжелые металлы (в сумме) 5 ˙10-6, железа 3 ˙10-5. Газовые смеси арсина указанного качества пригодны для прямого использования в установках газовой эпитаксии арсенида галлия. Расчетный единовременной объем смеси арсина в установке не превышал 0,5 л.

Для получения фосфина использовали аналогичное устройство, только вместо арсенида магния загружали в колонки фосфид магния.

Режим получения фосфина также был аналогичен, в результате была получена газовая смесь арсина с точкой росы 82оС, с суммарным содержанием халькогенов 6 ˙ 10-6 ат. тяжелых металлов 8 10-6 ат. и углеводородов 5 ˙ 10-4 ат.

Похожие патенты RU2036832C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ АРСИНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Кварацхели Юрий Константинович
  • Шаталов Валентин Васильевич
  • Демин Юрий Викторович
  • Кондратьев Александр Георгиевич
  • Хорозова Ольга Дмитриевна
RU2369666C1
СПОСОБ ПОЛУЧЕНИЯ МОНОСИЛАНА 1995
  • Фадеев Л.Л.
  • Кварацхели Ю.К.
  • Жирков М.С.
  • Ивашин А.М.
  • Кудрявцев В.В.
  • Гришин А.В.
  • Филинов В.Т.
RU2077483C1
КОМПОЗИЦИЯ, СПОСОБ И УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ФОСФИНСОДЕРЖАЩЕГО ГАЗА И СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОФОСФИДНОЙ КОМПОЗИЦИИ 1996
  • Хорн Феха Францискус
  • Рейхмут Кристоф
RU2238905C2
СПОСОБ ОЧИСТКИ ГАЛЛИЯ ОТ ПРИМЕСЕЙ 1990
  • Скороваров Д.И.
  • Филиппов Е.А.
  • Кварацхели Ю.К.
  • Фадеев Л.Л.
  • Первин В.Л.
  • Жирков М.С.
  • Якшин В.В.
  • Вилкова О.М.
RU2009238C1
СПОСОБ ПОЛУЧЕНИЯ МОНОСИЛАНА 1992
  • Скороваров Д.И.
  • Туманов Ю.Н.
  • Кварацхели Ю.К.
  • Иванов А.В.
  • Цирельников К.В.
  • Андреев К.П.
  • Вандышев В.И.
  • Сапожников М.В.
  • Жирков М.С.
  • Серегин М.Б.
RU2050320C1
СПОСОБ ПОЛУЧЕНИЯ МОНОСИЛАНА И ДИСИЛАНА 1999
  • Кварацхели Ю.К.
  • Жирков М.С.
  • Фадеев Л.Л.
  • Филинов В.Т.
RU2160706C1
СОСТАВ ДЛЯ ПРОИЗВОДСТВА ФОСФИНА, СПОСОБ КОНТРОЛИРУЕМОГО ПРОИЗВОДСТВА ФОСФИНА, УСТРОЙСТВО ДЛЯ КОНТРОЛИРУЕМОГО ПРОИЗВОДСТВА ФОСФИНА, УПАКОВАННЫЙ ВО ВЛАГОНЕПРОНИЦАЕМУЮ УПАКОВКУ ФОСФИДНЫЙ СОСТАВ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА ГАЗА ДЛЯ ФУМИГАЦИИ 1993
  • Колин Джозеф Вотерфорд
  • Кристофер Плейфорд Виттл
  • Роберт Гордон Винкс
RU2131190C1
СПОСОБ ПОЛУЧЕНИЯ ФОСФИНА, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И СИСТЕМА БЕЗОПАСНОСТИ ДЛЯ ПРОИЗВОДСТВА ФОСФИНА 1991
  • Генри Джонатан Бэнкс[Au]
  • Колин Джозеф Ботерфорд[Au]
RU2087415C1
СПОСОБ ПОЛУЧЕНИЯ И ХРАНЕНИЯ ВОДОРОДА В АВТОНОМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВКАХ 2001
  • Аваков В.Б.
  • Зинин В.И.
  • Шуляковский О.Б.
  • Шевелкин В.И.
RU2192072C1
Низкотемпературный способ формирования полупроводниковых слоев фосфида галлия и твердых растворов на его основе на подложках кремния 2016
  • Гудовских Александр Сергеевич
  • Кудряшов Дмитрий Александрович
  • Морозов Иван Александрович
  • Никитина Екатерина Викторовна
  • Монастыренко Анатолий Ойзерович
RU2690861C2

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ ГАЗОВОЙ СМЕСИ, СОДЕРЖАЩЕЙ АРСИН ИЛИ ФОСФИН, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: в микроэлектронике, волоконной оптике. Соединение мышьяка с металлами в виде гранул засыпают в реакционную колонку, через которую пропускают газ - носитель (например, водород), предварительно насыщенный водяным паром в термостате с сосудом увлажнителем, причем газ - носитель насыщают водяным паром до концентрации, отвечающей равновесному состоянию, а концентрация гидрида мышьяка в смеси с газом - носителем задается концентрацией насыщенного пара. 2 с. и 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 036 832 C1

1. Способ получения газовой смеси, содержащей арсин или фосфин, включающий гидролиз арсенида или фосфида металла, отличающийся тем, что гидролиз осуществляют путем пропускания предварительно насыщенного водяным паром до равновесного состояния газа-носителя через слои порошка арсенида или фосфида металла. 2. Способ по п.1, отличающийся тем, что толщина H слоя порошка арсенида или фосфида металла выбирают из условия H > nh, где n коэффициент > 1, h - толщина слоя порошка арсенида или фосфида металла, обеспечивающая уменьшение концентрации паров воды в арсине или фосфине в два раза. 3. Способ по п.1, отличающееся тем, что размер частиц порошка арсенида или фосфида металла выбирают более 0,1 мм. 4. Устройство для получения газовой смеси, содержащей арсин или фосфин, включающее колонку для гидролиза, средства подачи газа-носителя и вывода полученного продукта, отличающееся тем, что оно дополнительно снабжено термостатированным испарителем воды, а колонка выполнена в виде не менее двух отдельных секций.

Документы, цитированные в отчете о поиске Патент 1995 года RU2036832C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Устройство для контроля качества сварного соединения 1982
  • Червонный Станислав Иосифович
  • Скороделов Владимир Васильевич
  • Кравец Ольга Григорьевна
SU1049216A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 036 832 C1

Авторы

Кварацхели Ю.К.

Скороваров Д.И.

Невский О.Б.

Лобачев Ю.А.

Рябов С.В.

Малков Е.Л.

Кудрявцев В.В.

Ивашин А.М.

Даты

1995-06-09Публикация

1991-12-03Подача