НЕРЖАВЕЮЩАЯ СТАЛЬ Российский патент 1995 года по МПК C22C38/28 

Описание патента на изобретение RU2040579C1

Известны нержавеющие стали и сплавы, применяемые как конструкционный материал в указанных отраслях машиностроения (стали марок 08Х17Т, 08Х18Т1 и др. по ГОСТ 5632-72). Однако известные марки сталей не обеспечивают необходимого уровня основных физико-механических, технологических и служебных свойств и не отвечают современным требованиям производства и эксплуатации изделий продовольственного машиностроения.

Наиболее близкой к предлагаемой является высокохромистая ферритная сталь марки 08Х18Т1 (ГОСТ 5632-72), содержащая, мас. Углерод 0,08 Кремний 0,8 Марганец 0,7 Хром 17-19 Титан 0,6-1,0 Сера 0,025 Фосфор 0,035 Железо Остальное
Данную марку стали указанным ГОСТом рекомендуется использовать как материал-заменитель никельсодержащих металлов и сплавов в отдельных машиностроительных отраслях народного хозяйства.

Известный материал характеризуется склонностью к МКК сварных соединений и не обладает требуемым комплексом физико-механических свойств ( σb σ0,2 ЛДК, δ и др.), что не обеспечивает необходимой технологичности при производстве тонколистового рулонного проката и полуфабрикатов, получаемых методами глубокой вытяжки и штамповки.

Целью изобретения является создание новой марки стали, обладающей более высоким уровнем прочностных и пластических, а также сварочно-технологических свойств и коррозионной стойкости, повышение работоспособности и эксплуатационной надежности создаваемого технологического оборудования.

Цель достигается введением в состав предлагаемой композиции оптимального количества ванадия, азота, магния и церия. Содержание серы и фосфора в стали соответствует требованиям ГОСТ 5632-72 и не превышает соответственно 0,025 и 0,035 мас.

Предлагается сталь, содержащая, мас. Углерод 0,01-0,04 Кремний 0,3-0,8 Марганец 0,2-0,6 Хром 18-21 Ванадий 0,2-0,4 Титан 0,3-0,5 Азот 0,01-0,03 Церий 0,005-0,01 Магний 0,001-0,01 Железо Остальное.

Соотношение легирующих и модифицирующих элементов в предлагаемой стали выбрано таким, чтобы структура и физико-механические свойства основного металла и сварных соединений обеспечивали требуемый комплекс служебных и эксплуатационных характеристик создаваемого оборудования.

Введение в сталь оптимальных добавок ванадия и азота, а также модифицирование твердого раствора редко- и щелочноземельными элементами (Се и Мg) и контролирование суммарного содержания примесей обеспечивает необходимые прочностные и пластические свойства тонколистового рулонного проката, что увеличивает выход годного на стадии металлургического передела и повышает работоспособность материала в условиях эксплуатации современной перерабатывающей техники.

Несоблюдение указанных пределов по суммарному содержанию примесей внедрения (С+N) повышает склонность металла к межкристаллитному разрушению и приводит к увеличению загрязненности металла неметаллическими включениями по всему сечению листового проката, что снижает эксплуатационную надежность конструкции в условиях ударного и циклического нагружений.

Контролирование в заявляемой композиции соотношения V + Ti/C + N обеспечивает необходимую равнопрочность основного металла и металла шва сварных соединений и повышает сопротивление материала локальным видам коррозии. В частности, полностью подавляется склонность сварных соединений к межкристаллитной коррозии (МКК) и коррозионному растрескиванию (КР) под напряжением. В то же время, как показали исследования, несоблюдение требуемого отношения V + Ti/C + N ≥ 15 усиливает вероятность коррозионного поражения металла околошовной зоны и приводит к межкристаллитной и питтинговой коррозии.

Микролегирование предлагаемой стали магнием в указанных пределах улучшает ее структурную стабильность, способствует очищению границ зерна от неметаллических включений и других избыточных фаз, что положительно влияет на повышение пластичности и вязкости сложнолегированного хромистого феррита и его сварных соединений. Благодаря высокой термодинамической активности магний способствует эффективному снижению в твердом растворе вредных примесей и газов, повышает физико-химическую однородность и качество металла, что способствует улучшению технологической пластичности при обработке давлением крупных поковок и слитков и позволяет снизить трудоемкость процесса в 1,2-1,3 раза по сравнению с применяемыми технологиями.

Фрактографический анализ поверхности излома образцов методом сканирования на электронном микроскопе показал, что в предлагаемой стали доля вязкой составляющей в зоне разрушения возрастает по сравнению с известным материалом.

Содержание вводимых элементов менее указанных пределов легирования не обеспечивает требуемого положительного эффекта, а более высокое их содержание приводит к ухудшению и снижению ряда важнейших физико-механических свойств, определяющих работоспособность материала в условиях эксплуатации перерабатывающего оборудования АПК.

Полученный более высокий уровень основных прочностных и технологических свойств заявляемой композиции обеспечивается легированием стали в указанном соотношении с другими элементами.

В ЦНИИ КМ "Прометей" совместно с Челябинским металлургическим комбинатом в соответствии с планом научно-исследовательских работ отрасли в обеспечение выполнения известных Постановлений Правительства по программе "Прогресс-95" проведен комплекс опытно-промышленных работ по выплавке, пластической и термической обработкам осваиваемого тонколистового рулонного проката. Выплавка металла производилась в открытой 100 т электродуговой печи с последующей разливкой в слитки весом 10 и 12 т. Обработка металла давлением проводилась на промышленном кузнечно-прессовом оборудовании и включала прокатку слитков на слябы с последующим обжатием на стане 1700 и термообработкой в камерной печи.

Химический состав и результаты определения необходимых физико-механических и технологических свойств исследованных материалов представлены в табл. 1,2.

П р и м е ч а н и е.

1. Определение механических свойств металла производилось на стандартных образцах, выполненных из рулонной ленты толщиной 1 мм и термически обработанных по режиму: 780оС, 1 ч с последующим охлаждением на воздухе. Результаты испытаний усреднены по 3-м образцам на точку.

2. Определение внутреннего трения (ЛДК), как меры демпфирующей способности исследуемых материалов, проводилось на установке Д-6М при комнатной температуре.

3. Количество перегибов, характеризующих технологическую пластичность стали, определялось на сварных образцах при стандартных испытаниях на изгиб с перегибом в 180о. Сварные соединения выполнены аргоно-дуговой сваркой.

4. Склонность металла к межкристаллитной коррозии (МКК) определялась на сварных образцах в соответствии с требованиями ГОСТ 6032-89.

Ожидаемый технико-экономический эффект использования нового технического решения выражается в повышении эксплуатационной надежности и ресурса работы создаваемого технологического оборудования.

Похожие патенты RU2040579C1

название год авторы номер документа
НЕРЖАВЕЮЩАЯ ФЕРРИТНАЯ СТАЛЬ 1993
  • Филимонов Г.Н.
  • Павлов В.Н.
  • Мизецкий В.Л.
  • Максутов Р.Ф.
  • Агишев Л.А.
  • Яськин В.Н.
  • Повышев И.А.
  • Минченко Н.А.
  • Скотникова М.А.
  • Першин Н.В.
RU2040578C1
КОРРОЗИОННОСТОЙКИЙ СПЛАВ ДЛЯ ЭНЕРГЕТИЧЕСКОГО И ХИМИЧЕСКОГО МАШИНОСТРОЕНИЯ 1994
  • Филимонов Г.Н.
  • Павлов В.Н.
  • Крылова Р.П.
  • Бережко Б.И.
  • Воловельский Д.Э.
  • Махнач А.К.
  • Повышев И.А.
  • Зимин Г.Г.
  • Братко Г.А.
  • Сергеев А.Б.
  • Новожилов Н.Б.
  • Федяров Н.А.
RU2064521C1
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1993
  • Бережко Б.И.
  • Филимонов Г.Н.
  • Павлов В.Н.
  • Корюкова А.М.
  • Повышев И.А.
  • Братко Г.А.
  • Матвеев В.Г.
  • Заекин Л.П.
RU2039120C1
ВЫСОКОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ ДЛЯ СОСУДОВ ДАВЛЕНИЯ И ТРУБОПРОВОДОВ 1996
  • Азбукин В.Г.
  • Башаева Е.Н.
  • Павлов В.Н.
  • Карзов Г.П.
  • Филимонов Г.Н.
  • Повышев И.А.
  • Сулягин В.Р.
  • Ильин Ю.В.
RU2122600C1
НЕРЖАВЕЮЩАЯ СТАЛЬ С ВЫСОКОЙ ДЕМПФИРУЮЩЕЙ СПОСОБНОСТЬЮ 1992
  • Аравин Б.П.
  • Шекалов Б.И.
  • Винтайкин Е.З.
  • Удовенко В.А.
  • Макушев С.Ю.
  • Хомов С.Н.
  • Чудаков И.Б.
  • Любимова Э.Я.
  • Повышев И.А.
  • Дмитриев В.Б.
RU2025533C1
ВЫСОКОПРОЧНЫЙ КОРРОЗИОННО-СТОЙКИЙ СПЛАВ ДЛЯ ВЫСОКОНАГРУЖЕННЫХ ДЕТАЛЕЙ И УЗЛОВ АТОМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2000
  • Карзов Г.П.
  • Павлов В.Н.
  • Бережко Б.И.
  • Азбукин В.Г.
  • Филимонов Г.Н.
  • Корюкова А.М.
  • Повышев И.А.
RU2183690C2
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1992
  • Филимонов Г.Н.
  • Павлов В.Н.
  • Логинов В.П.
  • Повышев И.А.
RU2035524C1
КОРРОЗИОННОСТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ 1993
  • Сосенушкин Е.М.
  • Малышевский В.А.
  • Беляев В.А.
  • Калинин Г.Ю.
  • Голуб Ю.В.
  • Петров К.В.
  • Пермовская А.П.
  • Ямпольский В.Д.
  • Яськин В.Н.
RU2039122C1
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ ДЛЯ ТРУБОПРОВОДОВ 2001
  • Азбукин В.Г.
  • Башаева Е.Н.
  • Павлов В.Н.
  • Карзов Г.П.
  • Филимонов Г.Н.
  • Бережко Б.И.
  • Осипова И.С.
  • Минченко Н.А.
  • Крылова Р.П.
  • Хохлов А.А.
  • Кудрявцева И.В.
  • Попов О.Г.
RU2188874C1
АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1990
  • Горынин И.В.
  • Камышина К.П.
  • Кукушкина Н.К.
  • Лемус Н.Д.
  • Петров Ю.Н.
  • Томушкина С.А.
  • Чащинов В.А.
  • Арсов Янко Боянов[Bg]
  • Иванов Георги Минчев[Bg]
  • Петров Петр Костадинов[Bg]
  • Дачкова Маргарита Благоева[Bg]
  • Дренски Росен Димитров[Bg]
  • Илиев Тодор Русев[Bg]
  • Новицки Владимир Николаевич[Bg]
RU2009259C1

Иллюстрации к изобретению RU 2 040 579 C1

Реферат патента 1995 года НЕРЖАВЕЮЩАЯ СТАЛЬ

Изобретение относится к металлургии, в частности к легированной стали со специальными свойствами, и может быть использовано в общем и торговом машиностроении при производстве современного технологического оборудования для пищевых и перерабатывающих отраслей агропромышленного комплекса. Целью изобретения является создание нержавеющей стали с улучшенным комплексом физико-механических и технологических свойств по сравнению с известными конструкционными материалами, что обеспечивает повышение эксплуатационной надежности и ресурса работы современного технологического оборудования перерабатывающих отраслей АПК. Сталь содержит компоненты, мас. углерод 0,01 - 0,04; кремний 0,3 0,8; марганец 0,2 0,6; хром 18 21; ванадий 0,2 0,4; титан 0,3 0,5; азот 0,01 0,03; магний 0,001 0,01; церий 0,005 0,01; железо остальное, при выполнении следующих соотношений: сумма углерода и азота ≅ 0,05 ; отношение 2 табл.

Формула изобретения RU 2 040 579 C1

НЕРЖАВЕЮЩАЯ СТАЛЬ, содержащая углерод, кремний, марганец, хром, титан, железо, отличающаяся тем, что она дополнительно содержит ванадий, азот, магний, церий при следующем соотношении компонентов, мас.

Углерод 0,01 0,04
Кремний 0,3 0,8
Марганец 0,2 0,6
Хром 18 21
Ванадий 0,2 0,4
Титан 0,3 0,5
Азот 0,01 0,03
Магний 0,001 0,01
Церий 0,005 0,01
Железо Остальное
при условии выполнения следующих соотношений:
сумма углерода и азота ≅ 0,05,

Документы, цитированные в отчете о поиске Патент 1995 года RU2040579C1

ИГРУШКА-ПАРАШЮТ 1926
  • Тицнер Н.В.
SU5632A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1

RU 2 040 579 C1

Авторы

Максутов Р.Ф.

Яськин В.Н.

Агишев Л.А.

Матвеев В.Г.

Бережко Б.И.

Филимонов Г.Н.

Мизецкий В.Л.

Павлов В.Н.

Повышев И.А.

Минченко Н.А.

Мельников Ю.Я.

Лушников В.Ф.

Даты

1995-07-25Публикация

1992-12-18Подача