Изобретение относится к области металлургии редких металлов и может быть использовано при получении циркония или гафния высокой чистоты для нужд атомной энергетики.
Известен способ получения циркония высокой чистоты путем магниетермического восстановления тетрахлорида циркония, удаления из губки хлорида магния и остаточного магния вакуумной дистилляцией и иодидного рафинирования губки (Ластман Б. Керз Ф. Металлургия циркония. М. Иностр. лит-ра, 1959, с. 91-131). Аналогичный способ описан для получения гафния высокой чистоты (Металлургия гафния / Под ред. Д.Е.Томаса и Б.Т.Хейса. М. Металлургия, 1967, с.111-121).
Недостатки способов высокая энергоемкость процессов восстановления и дистилляции, трудоемкость извлечения губки из аппарата и сортировки ее, нестабильность химического состава губки.
В качестве прототипа выбран способ получения циркония и гафния высокой чистоты путем кальциетермического восстановления их тетрафторидов с добавлением в шихту металлического цинка в количестве 15-33 мас. от суммы циркония (гафния) и цинка в ней и иода в количестве 0,29 и 1,12 кг на 1 кг циркония и гафния соответственно с использованием нагрева шихты от внутреннего или внешнего источника, отгонки цинка из сплавов на основе циркония и гафния в вакууме в интервале температур 1250-1600оС, иодидного рафинирования губки и переплава иодидных прутков в инертной атмосфере. Цинк вводят в шихту для снижения температуры плавления циркония и гафния, а иод для выделения дополнительного тепла за счет взаимодействия его с кальцием. Расход кальция на взаимодействие с иодом составляет 0,09 и 0,35 кг соответственно при получении 1 кг циркония и гафния.
Недостатки способа многостадийность, высокий расход материалов и большие энергозатраты на стадиях нагрева шихты и отгонки цинка из сплавов.
Цель изобретения упрощение процесса, сокращение расхода материалов и энергозатрат.
Поставленная цель достигается тем, что иодидному рафинированию подвергают сплавы циркония и гафния с 4-10 мас. никеля, которые получают путем внепечного кальциетермического восстановления тетрафторида циркония и гафния в присутствии веществ, содержащих никель. Такими веществами являются металлический никель, оксид или фторид никеля.
Никель по сравнению с другими металлами, снижающими температуру плавления циркония и гафния, переносятся в иодидный пруток в наименьшей степени. Это позволяет использовать сплавы циркония и гафния с никелем в процессе иодидного рафинирования непосредственно после измельчения слитков, полученных в результате внепечной восстановительной плавки, без предварительной отгонки металла добавки. Содержание никеля в прутках иодидных циркония и гафния при этом не превышает 0,025 и 0,06 мас. соответственно и отвечает требованиям ТУ 95-46-76 и ГОСТ 22517-77.
Низкий предел содержания никеля в сплавах на основе циркония и гафния связан с возможностью получения компактных слитков без нагрева шихты внепечным способом, а также без введения в нее иода в качестве тепловыделяющей добавки и, следовательно, без дополнительного расхода кальция. Получение сплавов циркония и гафния с меньшим содержанием никеля этим методом приводит к получению слитков с повышенным содержанием шлаковых включений, дальнейшая переработка которых методом иодидного рафинирования затруднительна. Увеличение содержания никеля в сплавах внутри интервала 4-10 мас. приводит к росту выхода в слиток. Превышение содержания 10 мас. никеля в сплавах не приводит к росту выхода в слиток, но связано с увеличением расхода никеля и количества оборотного материала, который необходимо перерабатывать, и поэтому нецелесообразно.
Дополнительная очистка циркония и гафния от примесей происходит в процессе вакуумного переплава иодидных прутков. Переплав проводят в интервале остаточных давлений 1,33.10-1-1,33.10-4 Па (1.10-3-1.10-6 мм рт.ст.) с использованием вакуумнодуговых (ВДП) или электроннолучевых (ЭЛП) печей. По сравнению с переплавом в дуговых печах в инертной атмосфере, используемым в прототипе, вакуумный переплав для получения циркония и гафния высокой чистоты более эффективен в смысле очистки.
Результаты опытов по получению циркония и гафния высокой чистоты предлагаемым способом представлены в табл.1, 2.
П р и м е р 1. 4000 г измельченного тетрафторида циркония смешивают с 242 г порошка никеля (10% от суммы циркония и никеля в шихте) и 2200 г стружки кальция (15% избыток от стехиометрии). Шихту засыпают в графитовый тигель, помещенный в реторту. Реторту герметично закрывают крышкой и вакуумируют до остаточного давления 1,33 Па (1.10-2 мм рт.ст.), затем заполняют аргоном до атмосферного давления. Повторяют эту операцию с помощью запального устройства, спираль которого расположена в верхней части шихты, инициируют реакцию кальциетермического восстановления. После охлаждения продуктов плавки вынимают тигель из реторты и извлекают из него слиток и шлак. Тигель используют для проведения следующих плавок. Слиток имеет массу 2370 г, выход в слиток составляет 97,8% Слиток имеет массу 2370 г, выход в слиток составляет 97,8% Металл содержит, мас. Ni 10,2; O 0,07; N 0,005; C 0,028. Слиток измельчают до крупности частиц 2-4 мм и подвергают иодидному рафинированию. Осаждение металла проводят на циркониевую нить при температурах чернового материала в нити 300-370 и 1475-1290оС в начале и конце процесса соответственно. Прямой выход при однократном иодидном рафинировании 41% Четырехкратное повторение цикла с использованием отмытого оборотного материала увеличивает извлечение на этой стадии до 92% Масса прутков иодидного циркония составляет 1958 г, которые содержат, мас. Ni 0,023; O 0,015; N 0,003; C 0,008. Прутки иодидного циркония переплавляют в электроннолучевой печи при остаточном давлении 1,3.10-3 Па (1.10-5 мм рт.ст.) и получают слиток циркония массой 1938 г, который содержит, мас. Ni 0,009; O < 0,01; N < 0,003; C < 0,005. Содержание остальных примесей в 3-4 раза ниже требований ТУ 95-46-76 на иодидный цирконий. Выход циркония от тетрафторида до слитка рафинированного металла составляет 88,9%
П р и м е р 2. Смешивают 4000 г измельченного тетрафторида гафния, 350 г порошка фторида никеля (7% никеля от суммы гафния и никеля в шихте) и 1615 г стружки кальция (15% избыток от стехиометрии). Проводят вспомогательную плавку аналогично примеру 1. Получают слиток массой 2885 г с выходом 95,7% Сплав содержит, мас. Ni 7,1; O 0,08; N 0,006; C 0,02. Слиток измельчают до крупности частиц 2-4 мм и проводят иодидное рафинирование с осаждением гафния на молибденовую нить в условиях примера 1. Прямой выход гафния в пруток при однократном рафинировании составляет 52% Трехкратное повторение цикла с использованием отмытого оборотного материала приводит к получению 93% извлечения на этой стадии. Масса прутков иодидного гафния составляет 2490 г. Гафний содержит, мас. Ni 0,034; O 0,015; N 0,003; C 0,006. Проводят электронно-лучевой переплав аналогично примеру 1. Получают слиток гафния массой 2465 г, который содержит, мас. Ni 0,008; O < 0,01; N 0,003; C < 0,005. Содержание остальных примесей в 2-3 раза ниже требований ГОСТ 22517-77 к гафнию марки ГФИ 1. Выход гафния от тетрафторида до слитка рафинированного металла составляет 87,9%
Таким образом, предлагаемый способ получения циркония и гафния высокой чистоты по сравнению с прототипом позволяет:
упростить процесс вследствие исключения операции отгонки металла добавки из сплавов на основе циркония, гафния перед проведением иодидного рафинирования;
снизить расход металла добавки с 15-33% до 4-10% отказаться от использования иода при проведении восстановительной плавки и сократить расход кальция;
снизить энергозатраты за счет реализации внепечного процесса восстановления и исключения операции отгонки добавки из сплава при температуре в интервале 1250-1600оС в вакууме;
повысить чистоту циркония и гафния за счет использования переплава иодидных прутков в вакууме вместо переплава их в инертной среде.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ИЛИ ГАФНИЯ | 1991 |
|
SU1840498A1 |
СПОСОБ ПОЛУЧЕНИЯ ГАФНИЯ ИЛИ ЦИРКОНИЯ И ИХ СПЛАВОВ | 2000 |
|
RU2190031C2 |
СПОСОБ ПОЛУЧЕНИЯ ГАФНИЯ | 1989 |
|
RU2082793C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПЛАВОВ | 2001 |
|
RU2191838C1 |
Способ получения лигатур гафния с никелем | 1981 |
|
SU980446A1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОВ И СПЛАВОВ | 1996 |
|
RU2095440C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОВ И СПЛАВОВ | 2001 |
|
RU2191834C1 |
СПОСОБ РАФИНИРОВАНИЯ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПЛАВОВ | 1999 |
|
RU2168554C2 |
Способ получения слитков сплава на основе титана | 2017 |
|
RU2675010C1 |
СПОСОБ ВОЛКОВА ДЛЯ ПРОИЗВОДСТВА ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2401874C2 |
Использование: для получения циркония или гафния высокой чистоты. Сущность изобретения: пальциетермическое восстановление тетрафторидов в присутствии веществ, содержащих никель. Сплав циркония или гафния с никелем можно получить внепечной восстановительной плавкой. Переплав иодидных прутков циркония или гафния оптимально проводить в вакууме при остаточном давлении 1,3·10-1-1,3·10-4 Па. Изобретение позволяет упростить технологию исключением отгонки никеля из сплава, сократить расход кальция, повысить чистоту циркония или гафния. 2 з. п. ф-лы, 2 табл.
Carlson O.N., Schmorlt F.A., Wilhelm H.A.//J.Elecrochem Sa, 1957, 104, N 1, p.51-56. |
Авторы
Даты
1995-11-20—Публикация
1993-04-12—Подача