КОРРОЗИОННОСТОЙКАЯ МАГНИТОМЯГКАЯ СТАЛЬ Российский патент 1995 года по МПК C22C38/40 

Описание патента на изобретение RU2049145C1

Изобретение относится к металлургии конструкционных сталей и плавок, содержащих в качестве основы железо и хром, а также другие легирующие элементы, и может быть использовано в энергетическом и судовом машиностроении при производстве высоконадежных электромагнитных приводов современных исполнительных устройств и механизмов.

Известны конструкционные материалы, применяемые в указанных областях техники, например стали марок: 14Х17Н2, 12Х17, 09Х17Н.

Однако известные материалы характеризуются недостаточно высоким уровнем основных физико-механических, технологических и служебных свойств, что не обеспечивает требуемой эксплуатационной надежности и срока службы разрабатываемых тяговых электромагнитных приводов реакторного оборудования.

Наиболее близкой к предлагаемой композиции по назначению и составу компонентов является хромоникелевая-мартенситно-ферритная сталь марки 09Х17Н, содержащая, мас. Углерод 0,09 Марганец 0,5 Кремний 0,4-0,8 Хром 16,6-17,6 Никель 0,9-1,1 Сера 0,02 Фосфор 0,025 Медь 0,2 Железо Остальное
Однако известная сталь характеризуется недостаточной стабильностью магнитных свойств в условиях длительной эксплуатации и не обеспечивает требуемой коррозионной стойкости и сопротивлению хрупкому разрушению.

Цель изобретения повышение магнитных свойств и коррозионной стойкости, а также сопротивления хрупкому разрушению.

Цель достигается тем, что в сталь, содержащую углерод, кремний, марганец, хром, никель, серу, фосфор, железо, дополнительно вводят азот и церий при следующем соотношении компонентов, мас. Углерод 0,02-0,05 Кремний 0,4-0,8 Марганец 0,1-0,5 Хром 15,6-17,6 Никель 0,9-1,1 Азот 0,01-0,05 Церий 0,005-0,05 Сера 0,005-0,02 Фосфор 0,005-0,025 Железо Остальное Причем суммарное содержание углерода и азота не должно превышать 0,07%
Соотношение указанных легирующих и примесных элементов выбрано так, чтобы предлагаемая сталь после стандартной термической обработки обеспечивала требуемый уровень основных физико-механических технологических и служебных свойств, определяющих эксплуатационную надежность и работоспособность электромагнитных приводов регулирующих органов реакторного оборудования. Введение в предлагаемую сталь микролегирующих добавок РЗМ и азота в указанном соотношении с другими элементами улучшает ее структурную стабильность и положительно влияет на весь комплекс магнитных свойств, повышает сопротивлению металла и локальным видам коррозии. В частности, полностью подавляется склонность сварных соединений к межкристаллитной коррозии и коррозионному растрескиванию под напряжением.

Важное значение для металлов с ОЦК-решеткой, имеющих низкую растворимость примесей внедрения и отличающихся высокой чувствительностью к различным концентраторам напряжений, имеет форманеметаллических включений. Введение в предлагаемую сталь церия обусловлено регулированием формы таких включений, т.е. сфероидизацией оксидов, сульфидов и других образующихся избыточных фаз. Влияние церия проявляется еще и в том, что, являясь сильным модификатором, этот элемент способствует значительному улучшению физико-механических свойств стали. При этом, как показали исследования, происходит более равномерное распределение легирующих элементов и неметаллических включений по сечению слитка, металл очищается от вредных примесей и газов, тоньше и чище становится граница зерна, увеличивается прочность межкристаллитной связи, что в целом приводит к повышению пластичности и вязкости стали. При этом меняется механизм пластической деформации. Фрактографический анализ поверхности зоны разрушения образцов, проведенный на растровом электронном микроскопе методом сканирования, свидетельствует о значительном увеличении в изломе вязкой составляющей, является важной структурной характеристикой деформационной способности материала. Введение микродобавок церия вне предлагаемых пределов не приводит к заметному улучшению технологических и служебных характеристик стали, что вызвано образованием и выделением неметаллических включений и различных вторичных фаз. Указанное изменение соотношения легирующих элементов, а также ограничение суммарного содержания примесей внедрения связано с возможным образованием в приграничных областях продуктов распада аустенита и, в частности, обусловлено подавлением процессов мартенситного образования, что повышает физико-химическую однородность структуры, снижает склонность металла к межкристаллитному разрушению и оказывает положительное влияние на сварочно-технологические свойства и стабильность магнитных характеристик в процессе длительной эксплуатации электромагнитного оборудования.

Полученный более высокий уровень физико-механических и коррозионных свойств магнитной стали обеспечивается комплексным легированием предлагаемой композиции в указанном соотношении с другими элементами. В производственном объединении "Ижорский завод" совместно с ЦНИИ КМ "Прометей" и Челябинским металлургическим комбинатом проведен комплекс опытно-промышленных работ по выплавке, пластической и термической обработкам предлагаемой стали. Определены необходимые свойства и характеристики металла. Химический состав исследованных материалов, а также результаты определения их физико-механических свойств и коррозионной стойкости представлены в табл. 1 и 2.

Похожие патенты RU2049145C1

название год авторы номер документа
СОСТАВ СВАРОЧНОЙ ЛЕНТЫ И ПРОВОЛОКИ 2000
  • Горынин И.В.
  • Карзов Г.П.
  • Галяткин С.Н.
  • Михалева Э.И.
  • Воловельский Д.Э.
  • Морозовская И.А.
  • Юрчак А.В.
  • Волков В.В.
  • Петров В.В.
  • Серебренников Г.С.
RU2188109C2
КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2696792C1
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
Хладостойкая высокопрочная сталь 2020
  • Мирзоян Генрих Сергеевич
  • Орлов Александр Сергеевич
  • Володин Алексей Михайлович
  • Дегтярев Александр Федорович
RU2746598C1
Коррозионно-стойкая магнитомягкая сталь 1990
  • Соболев Юрий Васильевич
  • Масленок Борис Аркадьевич
  • Лебедев Владимир Васильевич
  • Сафронова Альбина Александровна
  • Павлов Валерий Николаевич
  • Повышев Игорь Анатольевич
  • Чувашова Нина Ивановна
  • Щучинский Самуил Хононович
SU1724718A1
Экономнолегированная хладостойкая высокопрочная сталь 2020
  • Мирзоян Генрих Сергеевич
  • Володин Алексей Михайлович
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
RU2746599C1
ЖАРОСТОЙКАЯ СТАЛЬ 2009
  • Дегтярев Александр Федорович
  • Егорова Марина Александровна
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
  • Михайлов Алексей Геннадьевич
  • Белявский Павел Борисович
  • Кнохин Валерий Георгиевич
RU2415963C2
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2018
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Назаратин Владимир Васильевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2683173C1
КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ СТАЛЬ И СПОСОБ ЕЕ ТЕРМОДЕФОРМАЦИОННОЙ ОБРАБОТКИ 2008
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Голуб Юлия Викторовна
  • Гутман Евгений Рафаилович
  • Калинин Григорий Юрьевич
  • Малахов Николай Викторович
  • Мушникова Светлана Юрьевна
  • Фомина Ольга Владимировна
  • Харьков Александр Аркадьевич
  • Цуканов Виктор Владимирович
  • Ямпольский Вадим Давыдович
  • Дурынин Виктор Алексеевич
  • Афанасьев Сергей Юрьевич
  • Баландин Сергей Юрьевич
  • Батов Юрий Матвеевич
  • Немтинов Александр Анатольевич
  • Степанов Александр Александрович
  • Луценко Андрей Николаевич
RU2392348C2
СТАЛЬ 2000
  • Ламухин А.М.
  • Луканин Ю.В.
  • Мороз А.Т.
  • Кузнецов В.В.
  • Рябинкова В.К.
  • Абраменко В.И.
  • Артюшечкин А.В.
  • Зиборов А.В.
  • Балдаев Б.Я.
  • Трайно А.И.
  • Чернышев А.Н.
  • Азизбекян В.Г.
RU2186145C2

Иллюстрации к изобретению RU 2 049 145 C1

Реферат патента 1995 года КОРРОЗИОННОСТОЙКАЯ МАГНИТОМЯГКАЯ СТАЛЬ

Изобретение относится к конструкционной стали и может быть использовано в энергетическом и судовом машиностроении при производстве высоконадежных электромагнитгных приводов современных исполнительных устройств и механизмов. Сущность изобретения: с целью повышения магнитных свойств коррозионной стойкости, сопротивления хрупкому разрушению сталь дополнительно содержит азот и церий при следующем соотношении компонентов, мас. углерод 0,02-0,05; кремний 0,4-0,8; марганец 0,1 - 0,5; хром 15,6 17,6; никель 0,9 1,1; азот 0,01 0,05; церий 0,005 0,05; сера 0,005 0,02; фосфор 0,005 0,025; железо остальное. 1 з.п.ф-лы, 2 табл.

Формула изобретения RU 2 049 145 C1

1. КОРРОЗИОННОСТОЙКАЯ МАГНИТОМЯГКАЯ СТАЛЬ, содержащая углерод, кремний, марганец, хром, никель, серу, фосфор, железо, отличающаяся тем, что, с целью повышения магнитных свойств, коррозионной стойкости, сопротивления хрупкому разрушению, она дополнительно содержит азот и церий при следующем соотношении компонентов, мас.

Углерод 0,02 0,05
Кремний 0,4 0,8
Марганец 0,1 0,5
Хром 15,6 17,6
Никель 0,9 1,1
Сера 0,005 0,02
Фосфор 0,005 0,025
Азот 0,01 0,05
Церий 0,005 0,05
Железо Остальное
2. Сталь по п.1, отличающаяся тем, что суммарное содержание углерода и азота не должно превышать 0,07.

Документы, цитированные в отчете о поиске Патент 1995 года RU2049145C1

Ершов Г.С., Бычков Ю.Б
Физико-химические основы рационального легирования сталей и сплавов
М.: Металлургия, 1982.

RU 2 049 145 C1

Авторы

Соболев Ю.В.

Масленок Б.А.

Копейкин А.В.

Лебедев В.В.

Сулягин В.Р.

Повышев И.А.

Щербинина Н.Б.

Павлов В.Н.

Козлов Р.А.

Даты

1995-11-27Публикация

1992-01-10Подача