СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА Российский патент 1997 года по МПК C10G65/14 

Описание патента на изобретение RU2072387C1

Изобретение относится к способам получения углеводородного топлива и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ получения малосернистых средних дистиллятов путем гидроочистки нефтяных фракций, выкипающих в пределах дизельного топлива. Процесс проводят при температуре 340-365oC, давлении 3,7-4,3 МПа, объемной скорости подачи сырья 3,0-4,3 ч-1 и соотношении водородсодержащий газ/сырье 200-300 нм33.

В результате получают продукт, содержащий менее 0,1% (и даже менее 0,05% ) серы, что выгодно отличает его от стандартного малосернистого дизельного топлива, содержащего до 0,2% серы.

Указанный продукт может быть использован как дизельное топливо с улучшенными экологическими характеристиками [1]
Недостатком способа является невозможность получения на его основе продуктов с пониженным содержанием ароматических углеводородов, а также с улучшенными низкотемпературными свойствами.

Также известен способ получения малосернистого углеводородного топлива путем гидрирования прямогонных дистиллятов с получением продукта, содержащего менее 0,01% серы и ароматических углеводородов до 5 мас. [2]
Процесс позволяет заметно улучшить экологические характеристики топлива, однако не решает вопроса снижения его температуры застывания. К тому же разработанная технология предусматривает использование высокого давления водорода до 10-15 МПа, что существенно удорожает производство.

Наиболее близким к предлагаемому является способ получения углеводородного топлива, заключающийся в гидрировании газойлей каталитического крекинга при высоком давлении водорода. Гидрирование проводят при давлении водорода 25-30 МПа, температуре 340-380oС, объемной скорости подачи сырья 0,5-0,7 ч-1, соотношении водород/сырье 1500 нм33.

В качестве катализатора используют сульфидный никель-вольфрамовый контакт. Указанный способ позволяет получить углеводородное топливо, характеризующееся низким содержанием ароматических углеводородов (менее 10 мас.) и сернистый соединений (серы 0,01-0,04 мас.) при хороших низкотемпературных свойствах. В силу этого полученное топливо удовлетворяет в ряде случаев требованиям на арктический и зимний сорта дизельного топлива [3]
Недостатком способа является относительно невысокий выход целевого продукта, не превышающий 50-65 мас. Другим недостатком способа является необходимость применения высокого давления водорода (до 30 МПа), что заметно повышает капитальные и эксплуатационные затраты при его производстве. К числу недостатков следует отнести и использование в качестве сырья легких газойлей каталитического крекинга. Учитывая ограниченное развитие в нашей стране процесса каталитического крекинга, трудно ожидать широкомасштабного освоения предложенной технологии в промышленной практике.

Технической задачей изобретения является повышение выхода углеводородного топлива и улучшение экологических свойств топлива.

Эта задача решается тем, что в предлагаемом способе получения углеводородного топлива гидрообработке подвергают фр. 140(180)-260(350)oC, которую разделяют на два потока. Первый поток (50-90% от выхода этой фракции) направляют на гидроочистку и последующую цеолитовую депарафинизацию. Второй поток (10-50% от выхода) подвергают гидрооблагораживанию. После этого смешивают полученные продукты, получая малосернистое углеводородное топливо с умеренным содержанием ароматических углеводородов и хорошими низкотемпературными свойствами.

Причем процесс гидроочистки цеолитовой депарафинизации позволяет получить продукт, характеризующийся содержанием серы менее 0,05 мас. и температурой застывания ниже -45oC (при содержании ароматических углеводородов 18-30 мас. ). Процесс гидрооблагораживания позволяет достичь несколько большего остаточного содержания серы (до 0,1-0,2 мас.) при меньшем содержании ароматических углеводородов (10-25%).

Гидроочистку сырья проводят при давлении 3-5 МПа, температуре 320-380oC, объемной скорости подачи сырья 1-5 ч-1, соотношение ВСГ/сырье 250-1000 нм33. Цеолитовую деперафинизацию проводят при температуре 360-450oC, объемной скорости подачи сырья 0,5-4,0 ч-1, давлении 0,5-2,0 МПа.

В качестве катализатора гидроочистки используют алюмокобальт (никель)-молибденовые композиции. В качестве цеолита на стадии депарафинизации используют системы типа CaX или CaY.

Отличительной особенностью способа является включение в схему производства стадии цеолитовой депарафинизации, что обеспечивает практически полное извлечение нормальных парафиновых углеводородов и тем самым способствует резкому снижению температуры застывания продукта, что позволяет вырабатывать низкозастывающие (зимние и арктические) сорта дизельного топлива.

Отличительной особенностью способа является так же использование стадии гидрооблагораживания дистиллята, что способствует дополнительному снижению содержания в последнем сернистых соединений и ароматических углеводородов и тем самым обеспечивает уменьшение вредных выбросов при сгорании топлива в двигателе. Указанную стадию осуществляют на никель-молибденовом катализаторе, характеризующемся высокими обессеривающими и деароматизирующими свойствами, что обеспечивает одновременное протекание реакций превращения сернистых и ароматических соединений.

Вовлечение в полученную конечную продукцию дополнительно гидрооблагороженного дистиллата позволяет улучшить экологические характеристики товарного углеводородного топлива и рекомендовать его к использованию как дизельное топливо экологически чистое (ЭЧДТ). Стадию дополнительного гидрооблагораживания осуществляют при давлении 3-5 МПа, температуре 320-380oC, объемной скорости подачи сырья 1-5 ч-1, соотношении ВСГ/сырье 250-1000 нм33.

В качестве катализатора используют никель-молибденовые системы с окисноалюминиевым носителем.

Пример 1. Обработке подвергают нефтяной дистиллат, выкипающий в интервале температур 140-260oC (содержание серы 0,25 мас.), ароматических углеводородов 23 мас. температура застывания минус 40oC). Порцию указанного продукта (50% от его выхода) направляют на гидроочистку с последующей цеолитовой депарафинизацией, что обеспечивает получение катализата, характеризующегося содержанием серы 0,02 мас. ароматических углеводородов 26 мас. температурой застывания минус 57oC. Гидроочистку проводят при давлении 3 МПа, температуре 380oC, объемной скорости подачи сырья 1 ч-1, соотношении ВСГ/сырье 250 нм33.

В качестве катализатора гидроочистки используют никель-молибденовую композицию (3% оксида никеля, 12% оксида молибдена, 2% цеолита "РЗУ", 83% оксида алюминия). В качестве сорбента депарафинизации цеолит CaY.

Условия цеолитовой депарафинизации: температура 360oC, давление 0,5 МПа, объемная скорость подачи сырья 0,5 ч-1.

Вторую порцию этого продукта (50% от исходного дистиллата) направляют на гидрооблагораживание, в результате которого получают катализат, характеризующийся содержанием серы 0,03 мас. ароматических углеводородов 6 мас. температурой застывания минус 41oC. Гидрооблагораживание проводят при давлении 3 МПа, температуре 320oC, объемной скорости подачи сырья 1,0 ч-1.

Катализатор гидрооблагораживания представляет собой никель-молибденовую композицию: 5% оксида никеля, 15% оксида молибдена на оксидно-алюминиевом носителе (80 мас.).

При компаундировании обоих названных продуктов получают топливо, содержащее 0,027 мас. серы, 16 мас. ароматических углеводородов с температурой застывания -45oC, что отвечает техническим требованиям на экологически чистое арктическое дизельное топливо.

Пример 2. Обработке подвергают нефтяной дистиллат, выкипающий в интервале температур 160-300oC (содержание серы 0,4 мас. ароматических углеводородов 25 мас. температура застывания минус 30oC).

Порцию указанного продукта (75% от его выхода) направляют на гидроочистку с последующей цеолитовой депарафинизацией, что обеспечивает получение катализата, характеризующегося содержанием серы 0,05 мас. ароматических углеводородов 28 мас. температурой застывания минус 56oC. Гидроочистку проводят при давлении 4 МПа, температуре 350oC, объемной скорости подачи сырья 3 ч-1, отношении ВСГ/сырье 700 нм33.

В качестве катализатора гидроочистки используют никель-молибденовую композицию (4,5% оксида никеля, 16,5% оксида молибдена, 2% цеолита "РЗУ", 77% оксида алюминия). В качестве сорбента депарафинизации: температура 400oC, давление 1,0 МПа, объемная скорость подачи сырья 2,0 ч-1.

Вторую порцию этого продукта (25% от исходного дистиллата) направляют на гидрооблагораживание, в результате которого получают катализат, характеризующийся содержанием серы 0,04 мас. ароматических углеводородов 8 мас. температурой застывания минус 32oC. Гидрооблагораживание проводят при давлении 4 МПа, температуре 350oC, объемной скорости подачи сырья 3 ч-1.

Катализатор гидрооблагораживания представляет собой никель-молибденовую композицию: 7% оксида никеля, 17% оксида молибдена на оксидно-алюминиевом носителе (76 мас.).

При компаундировании обоих названных продуктов получают топливо, содержащее 0,04 мас. серы, 19 мас. ароматических углеводородов с температурой застывания минус 35oC, что отвечает техническим требованиям на экологически чистое зимнее дизельное топливо.

Пример 3. Обработке подвергают нефтяной дистиллат, выкипающий в интервале температур 180-360oC (содержание серы 0,8 мас. ароматических углеводородов 28 мас. температура застывания минус 5oC).

Порцию указанного продукта (90% от его выхода) направляют на гидроочистку с последующей цеолитовой депарафинизацией, что обеспечивает получение катализата, характеризующегося содержанием серы 0,06 мас. ароматических углеводородов 30 мас. температурой застывания минус 50oC. Гидроочистку проводят при давлении 5 МПа, температуре 320oC, объемной скорости подачи сырья 5 ч-1, отношении ВГС/сырье 1000 нм33.

В качестве катализатора гидроочистки используют никель-молибденовую композицию (4,5% окисла никеля, 16,5% оксида молибдена, 2% цеолита "РЗУ", 77% оксида алюминия).

В качестве сорбента депарафинизации используют цеолит СаY. Условия цеолитовой депарафинизации: температура 450oC, давление 2 МПа, объемная скорость подачи сырья 4,0 ч-1.

Вторую порцию этого продукта (10% от исходного дистиллата) направляют на гидрооблагораживание, в результате которого получают катализат, характеризующийся содержанием серы 0,04 мас. ароматических углеводородов 12 мас. температурой застывания минус 10oC.

Гидрооблагораживание проводят при давлении 5 МПа, температуре 380oC, объемной скорости подачи сырья 5 ч-1.

Катализатор гидрооблагораживания представляет собой никель-молибденовую композицию: 7% оксида никеля, 17% оксида молибдена на оксидно-алюминиевом носителе (76 мас.).

При компаундировании обоих названных продуктов получают топливо, содержащее 0,05 мас. серы, 19 мас. ароматических углеводородов с температурой застывания минус 18oC, что отвечает требованиям на экологически чистое летнее дизельное топливо.

Похожие патенты RU2072387C1

название год авторы номер документа
КАТАЛИЗАТОР ГИДРОПЕРЕРАБОТКИ И СПОСОБ ГИДРОПЕРЕРАБОТКИ НЕФТЯНОГО И КОКСОХИМИЧЕСКОГО СЫРЬЯ С ЕГО ИСПОЛЬЗОВАНИЕМ 1996
  • Вайль Ю.К.
  • Нефедов Б.К.
  • Дейкина М.Г.
  • Ростанин Н.Н.
RU2102139C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО МАСЛА 1997
  • Рогов С.П.
  • Кузина Т.А.
  • Школьников В.М.
  • Андреев В.С.
  • Морошкин Ю.Г.
  • Афанасьев А.Н.
RU2123028C1
СПОСОБ ОБЛАГОРАЖИВАНИЯ НЕФТЯНЫХ ДИСТИЛЛАТОВ 1994
  • Каминский Э.Ф.
  • Радченко Е.Д.
  • Мелик-Ахназаров Т.Х.
  • Хавкин В.А.
  • Курганов В.М.
  • Егоров И.В.
  • Усманов Р.М.
  • Прокопюк С.Г.
  • Ганцев В.А.
  • Бычкова Д.М.
  • Лощенкова И.Н.
  • Пуринг М.Н.
RU2072386C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2016
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Красильникова Людмила Александровна
  • Груданова Алёна Игоревна
  • Шмелькова Ольга Ивановна
  • Болдушевский Роман Эдуардович
RU2623088C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 1993
  • Хавкин В.А.
  • Курганов В.М.
  • Нефедов Б.К.
  • Фрейман Л.Л.
  • Кричко А.А.
  • Демьяненко Е.А.
  • Карибов А.К.
  • Стуре Н.Н.
  • Бирюков Ф.И.
  • Оразсахатов К.С.
  • Зорькин А.М.
  • Дейкина М.Г.
  • Гуляева Л.А.
RU2039788C1
СПОСОБ ГИДРОГЕНИЗАЦИОННОГО ОБЛАГОРАЖИВАНИЯ ДИЗЕЛЬНЫХ ДИСТИЛЛАТОВ 2005
  • Хавкин Всеволод Артурович
  • Школьников Виктор Маркович
  • Гуляева Людмила Алексеевна
  • Осипов Лев Николаевич
  • Капустин Владимир Михайлович
  • Маненков Владимир Алексеевич
RU2293757C1
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА 2008
  • Капустин Владимир Михайлович
  • Шуверов Владимир Михайлович
  • Забелинская Елена Николаевна
  • Галиев Ринат Галиевич
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
RU2381259C1
СПОСОБ ПЕРЕРАБОТКИ ВАКУУМНЫХ ДИСТИЛЛАТОВ 2015
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Виноградова Наталья Яковлевна
  • Шмелькова Ольга Ивановна
  • Капустин Владимир Михайлович
  • Чернышева Елена Александровна
  • Зуйков Александр Владимирович
  • Махин Дмитрий Юрьевич
RU2605950C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2002
  • Демьяненко Е.А.
  • Санников А.Л.
  • Дружинин О.А.
  • Твердохлебов В.П.
  • Бирюков Ф.И.
  • Хандархаев С.В.
  • Каминский Э.Ф.
  • Мелик-Ахназаров Талят Хосров Оглы
  • Лощенкова И.Н.
  • Хавкин В.А.
  • Гуляева Л.А.
  • Бычкова Д.М.
RU2205200C1
СПОСОБ ПОЛУЧЕНИЯ АВИАЦИОННОГО КЕРОСИНА 2008
  • Галиев Ринат Галиевич
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Бушуева Елизавета Михайловна
  • Бычкова Дина Моисеевна
  • Лощенкова Ирина Николаевна
  • Захариди Татьяна Николаевна
RU2352614C1

Реферат патента 1997 года СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА

Использование: нефтехимия. Сущность изобретения: нефтяной дистиллят, выкипающий при температуре 140 (180) - 260 (360)oC разделяют на два потока в соотношении 50-90 % : 10-50 мас.%. Первый подвергают гидроочистке при 3-5 МПа и цеолитовой депарафинизации, второй - гидрооблагораживанию. Полученные продукты смешивают. Гидроочистку проводят при 320-380oC, объемной скорости подачи сырья 1-5 ч-1, отношении водородсодержащий газ/сырье 250-1000 нм33. Депарафинизацию проводят при 360-450oC, 0,5-2,0 МПа, объемной скорости подачи сырья 0,5-4,0 ч-1. Гидрооблагораживание осуществляют при 320-380oC, 3-5 МПа, объемной скорости подачи сырья 1,0-5,0 ч-1. 3 з.п. ф-лы.

Формула изобретения RU 2 072 387 C1

1. Способ получения углеводородного топлива, включающий гидрообработку нефтяных дистиллятов при повышенных температуре и давлении, отличающийся тем, что исходный нефтяной дистиллят, выкипающий в интервале температур 140(180) 260(360)oС разделяют на два потока в соотношении, мас. 50-90:10-50, первый из которых подвергают гидроочистке при давлении 3 5 МПа и цеолитовой депарафинизации, а второй гидрооблагораживанию с последующим смешением полученных продуктов. 2. Способ по п.1, отличающийся тем, что гидроочистку осуществляют при температуре 320 380oС, объемной скорости подачи сырья 1,0 5,0 ч-1, соотношении водородсодержащий газ: сырье 250 1000 нм33. 3. Способ по п.1, отличающийся тем, что цеолитовую депарафинизацию осуществляют при температуре 360 450oС, давлении 0,5 2,0 МПа, объемной скорости подачи сырья 0,5 4,0 ч.-1. 4. Способ по п.1, отличающийся тем, что гидрооблагораживание осуществляют при температуре 320 380oС, давлении 3 5 МПа, объемной скорости подачи сырья 1,0 5,0 ч-1.

Документы, цитированные в отчете о поиске Патент 1997 года RU2072387C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Осипов Л.Н
и др
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Martin Booth Oil and Jas J
Автоматический огнетушитель 0
  • Александров И.Я.
SU92A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Бабиков А.Ф
и др
"Производство дизельного топлива с пониженным содержанием ароматических углеводородов", Химия и технология топлив и масел, N 3, 1993, с.34.

RU 2 072 387 C1

Авторы

Каминский Э.Ф.

Радченко Е.Д.

Хавкин В.А.

Курганов В.М.

Мелик-Ахназаров Т.Х.

Шафранский Е.Л.

Рабинович Г.Б.

Карташов М.В.

Гуляева Л.А.

Даты

1997-01-27Публикация

1994-10-04Подача