СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО ЭЛЕКТРОНАГРЕВАТЕЛЯ Российский патент 1997 года по МПК H05B3/14 H05B3/28 

Описание патента на изобретение RU2074519C1

Изобретение относится к области электротермии и может быть использовано при производстве полимерных электронагревателей.

Известны способы изготовления полимерных электронагревателей, заключающиеся в нанесении на изоляционную подложку токопроводящего слоя на основе углерода элементного (сажи) или графита и связующего синтетической смолы путем пропитки с уплотнением при температурно-временных режимах и давлении, соответствующих виду синтетической смолы, последующем нанесении электроизоляционного покрытия и прессования всех слоев при соответствующих режимах [1,2]
Недостатками известных способов является нестабильность электрических параметров электронагревателя и как следствие неравномерность его температурного поля.

Наиболее близким к изобретению является способ изготовления полимерного электронагревателя, при котором на изоляционную подложку наносят токопроводящий слой на основе углерода (сажи), графита и синтетической смолы и образуют резистивный элемент путем пропитки с уплотнением, затем наносят на него изоляционное покрытие и прессуют все слои, причем пропитку с уплотнением и прессование ведут при температурно-временных режимах и давлении, соответствующих виду синтетической смолы [3]
Основной недостаток способа изготовления полимерного электронагревателя [3] заключается в нестабильности значений R токопроводящего препрега (ТПП) по сравнению с заданным, в связи с неравномерным по поверхности резистивного элемента изменением сопротивления (в сравнении с первоначальным значением) при дополнительном уплотнении (опрессовке), что связано с подвижностью (текучестью) неотвержденного ТПС в процессе нагрева под большим давлением, непараллельностью прокладочных листов, плит пресса и т.п. факторов.

Как следствие указанного недостатка большая (до 40oС) неравномерность температурного поля на поверхности резистивного элемента и полимерного электронагревателя, изготовленного с его применением, как в исходном состоянии, так и в течение длительного (до 15 20 лет) срока эксплуатации. В связи с высокой неоднородностью температурного поля, в отдельных точках резистивного элемента при эксплуатации полимерного электронагревателя возникают зоны перегрева, что, в свою очередь, ведет к прогарам в этих местах и выходу полимерного электронагревателя из строя.

Целью изобретения является разработка такого способа изготовления полимерного электронагревателя, разброс сопротивления по поверхности которого не должен быть больше, чем у ТПС, из которой он изготовлен, а разброс по температурному полю не более 6 8oС.

Техническим результатом изобретения является повышение стабильности полимерного электронагревателя по сопротивлению (мощности), температурному полю, уменьшение брака, повышение его надежности и долговечности в процессе эксплуатации.

Поставленная задача и технический результат изобретения достигаются за счет:
проведения операции термообработки (отверждения) резистивного элемента без уплотнения (опрессовки);
изменения режима термообработки (отверждения) резистивного элемента;
изменения содержания связующего в электроизоляционных слоях, прилегающих к резистивному элементу.

Для этого в способе изготовления полимерного, например, стеклопластикового электронагревателя, включающем нанесение на электроизоляционную подложку путем ее пропитки с уплотнением токопроводящего слоя на основе углерода элементного, графита и модифицированной феноло-формальдегидной смолы с образованием резистивного элемента, нанесение на него слоев, пропитанных эпоксидным или эпоксифенольным или феноло-формальдегидным связующим для образования электроизоляционного покрытия с последующим прессованием всех слоев при соответствующих температурно-временных режимах и давлении, отличающийся тем, что резистивный элемент перед нанесением на него электроизоляционного покрытия стопируют с аналогичными резистивными элементами и в стопированном виде термообрабатывают (отверждают) при температуре 130 140oС в течение 10 12 мин на каждый миллиметр толщины стопы, после термообработки извлекают из стопы, на него и каждый оставшийся наносят слои электроизоляционного покрытия с содержанием связующего в прилегающих к резистивному элементу слоях в 1,2 1,27 раза меньшем, чем в наружных, равном 40 47 мас. и их прессуют.

Отличительными особенностями предложенного способа изготовления полимерного электронагревателя являются следующие признаки:
отверждение резистивных элементов проводят в стопированном из них виде по режиму 130 140oС в течение 10 12 мин на каждый миллиметр стопы, без давления;
в прилегающих к резистивному элементу слоях изоляционного покрытия обеспечивают содержание связующего в 1,2 1,27 раза меньше, чем в наружных, равном 40 47 мас.

Указанные отличительные признаки являются существенными, т.к. каждый из них в отдельности и совместно направлен на решение поставленной задачи и достижения нового положительного эффекта в соответствии с целью изобретения.

Так, например, если исключить термообработку (отверждение) резистивного элемента при 130 140oС в течение 10 12 мин на каждый миллиметр толщины стопы или провести отверждение по другому температурно-временному режиму, то полимерный электронагреватель получается с сопротивлением (мощностью), не соответствующим заданному, и с большим разбросом по температурному полю. Более того, если отверждение резистивного элемента производить под давлением, то у него разброс по сопротивлению и, как следствие, у полимерного электронагревателя по температурному полю будет еще больше.

При изготовлении полимерных электронагревателей важной задачей является обеспечение сопротивления таким же или близким, как и у резистивных элементов, на основе которых они изготовляются. Однако, если в прилегающих к резистивному элементу изоляционных слоях не обеспечить содержание связующего в 1,2 1,27 раза меньше, чем в наружных, т.е. 33 37 мас. то невозможно изготовить полимерный электронагреватель с заданным и стабильным (не более ±7 Ом) сопротивлением и разбросом по температурному полю не выше 6 8oС.

Единая совокупность новых и общих известных существенных признаков обеспечивают решение поставленной задачи и достижение нового положительного эффекта, что характеризует предложенное техническое решение существенными отличиями от известного уровня техники, аналогов и прототипа. Техническое решение является результатом исследовательской работы, в нем не использованы стандартные решения и нормативные указания, оно носит характер творческого вклада и характеризуется критерием "Изобретательский уровень".

Сущность изобретения заключается в следующем.

В шаровой мельнице приготавливают токопроводящее связующие (ТПС), представляющее собой 30 60% -ный спиртовой раствор, состоящий из феноло-формальдегидной смолы, например, бакелитового лака ЛБС-20, модифицированного клеем БФ-4, углерода (сажи) и графита (в соотношении от 4:1 до 6:1) в суммарном количестве 40 мас. (на сухой остаток смоляной части).

Изготовление резистивного элемента производят путем пропитки стеклоткани (марок Т-10 или Т-13) ТПС с уплотнением между отжимными валами (при цеховой температуре) с удельным давлением 1 5 кгс/см2. В зависимости от требуемой величины сопротивления квадрата (100х100 мм) ткани (при замере на машине) производят однократную (или 2 3-х кратную) пропитку по следующему режиму:
Скорость пропитки, м/мин 0,6 1,25
Температура в шахте, oС:
электрической 100±10
паровой 110±5
Расход воздуха, м3/ч 1500 1800
Зазор между отжимными валками, мм 0,35 0,6
Cопротивление квадрата ткани, Ом 30 160
Из полученной токопроводящей ткани (ТПТ) изготовляют резистивный элемент по размерам, исходя из размеров электронагревателя.

Затем резистивные элементы в стопированном виде (не более 100 шт. в каждой стопе) помещают в термошкаф (с равномерной циркуляцией нагретого воздуха) и термообрабатывают (отверждают) без давления по режиму: 130 - 140oС в течение 10 12 мин на каждый миллиметр толщины стопы.

После отверждения осуществляют замер сопротивления каждого резистивного элемента, а затем закрепляют (одним из известных способов) токоведущие шинки из латуни или меди, расположенные параллельно на поверхности резистивного элемента.

Полученный резистивный элемент изолируют с обеих сторон одним слоем стеклоткани Т-10 или Т-13, пропитанной электроизоляционным связующим эпоксидного или эпоксифенольного или фенолоформальдегидного типа с содержанием связующего 33 37 мас. и двумя слоями стеклоткани Э31-100П (или Э31-125П), пропитанной связующим той же марки, что и стеклоткань Т-10 (или Т-13), но с содержанием связующего 40 47 мас.

В качестве электроизоляционных связующих были опробованы: эпоксидные - марки ЭХД-У (ТУ В3-708-85), эпоксифенольное лак ЭП-5122 (ТУ 16-504.010-84) и феноло-формальдегидное бакелитовый лак ЛБС-20 (ГОСТ 901-78).

Для всех указанных марок электроизоляционных связующих был выбран один и тот же (близкий к оптимальному) режим прессования (указан ниже). Данный режим позволяет получить стеклопластиковый электронагреватель с высокими диэлектрическими показателями электроизоляционных слоев (стеклопластика): тангенс угла диэлектрических потерь не более 0,015; удельное объемное электрическое сопротивление не менее 2х1013 Ом•см; диэлектрическая проницаемость не менее 5,5; электрическая прочность не ниже 15 кВт/мм. Приведенные в табл. 2,3 данные, соответствуют всем трем указанным типам электроизоляционных связующих.

Пакетным способом производят прессование полимерного электронагревателя по следующему режиму:
подъем температуры до 145 150oС в течение 35 40 мин, выдержка при этой температуре 20 25 мин на миллиметр толщины прессуемого электронагревателя, удельное давление прессования 25 кгс/см2.

В табл. 1 даны сравнительные данные по операциям и режимам изготовления полимерного электронагревателя по прототипу и изобретению.

Как следует из табл. 1 в прототипе резистивный элемент отверждается в прессе под удельным давлением 5 40 кг/см2, в связи с этим нарушается структура проводящего слоя, созданная в процессе пропитки стеклоткани ТПС (с уплотнением между отжимными валками).

В предлагаемом техническом решении резистивный элемент отверждается при указанных температурах и временных режимах в стопированном из них виде без давления, что позволяет застабилизировать нанесенный токопроводящий слой.

Как видно из табл. 2, стабильность резистивного элемента, а следовательно, и ННЭ по температурному полю максимальный разброс состаляет 6 - 8oC (против 12 30oС для прототипа). При этом разброс по сопротивлению материала резистивного элемента остается таким же, как и у ТПТ (токопроводящей ткани) после пропитки, то есть, ±2 Ом (по основе).

Наиболее оптимальным режимом отверждения резистивного элемента, когда разброс по температуре составляет 6 8oС, достигается при температуре отверждения 130 140oС и выдержке 10 -12 мин на каждый миллиметр толщины стопы из резистивных элементов.

При изготовлении стеклопластиковых ННЭ (обычно толщиной 1,2 1,5 мм) содержание связующего в изоляционных слоях пропитанной стеклоткани должно обеспечивать высокую монолитность стеклопластика (отсутствие расслоений, трещин, пустот и т.п.), т. е. межслоевая прочность, или прочность при скалывании должна составлять не менее 300 кг/см2. Применяемые при изготовлении ННЭ, особенно для бытовых целей, для улучшения внешнего вида различные декоративные материалы (бумага, хлопчатобумажные ткани и т.п.) требуют для обеспечения пропитываемости дополнительное количество связующего в изоляционных слоях.

Установлено, что для выполнения этих требований необходимо и достаточно содержание связующего в изоляционных слоях 40 47 мас.

Однако, если в прилегающих к резистивному элементу слоях изоляционного покрытия оставить такое содержание связующего, то сопротивление ННЭ будет существенно отличаться от сопротивления резистивного элемента после термообработки (примеры 6, 7 табл. 3).

В связи с этим содержание связующего в изоляционных слоях прилегающих к резистивному элементу, должно быть в 1,2 1,27 раза меньше, чем в наружных, т. е. 33 37 мас. (примеры 3 5, табл. 3).

При содержании связующего менее 33 мас. (примеры 1, 2 табл. 3) не выполняется требование по межслоевой прочности, а также имеют место расслоения на границе раздела резистивный элемент -электроизоляционный слой.

Электроизоляционное покрытие с каждой стороны резистивного элемента (примеры 2-10 состоит из одного (прилегающего к резистивному элементу) слоя ткани Т-10 или Т-13, пропитанной эпоксидным или эпоксифенольным или феноло-формальдегидным связующим с содержанием последнего 33-37 мас. а затем двух слоев стеклоткани Э31-100П (или Э31-125П), пропитанной тем же связующим, но с содержанием последнего 40-47 мас.

При этом изменение удельного давления прессования при изготовлении ННЭ в пределах 20 25 кгс/см2 практически не изменяет сопротивления резистивного элемента и обеспечивает получение заданного (в пределах допустимого ГОСТ разброса не более ± 7 Ом) сопротивления ННЭ.

Снижение удельного давления прессования менее 20 кгс/см2, как показали опыты, ведет к ухудшению внешнего вида ННЭ (непропрессовки, непропитанные участки декоративного материала, снижение межслоевой прочности и т.п.), а увеличение более 25 кгс/см2, к чрезмерному выдавливанию связующего из изоляционных слоев и также к появлению вышеназванных дефектов.

По предложенному способу были изготовлены полимерные электронагреватели (в количестве 400 шт.) со следующими характеристиками: рабочее напряжение - 220 В; мощность 350 Вт.

Результаты испытаний полимерных электронагревателей, полученных предложенным способом, являются положительными. Разброс по сопротивлению резистивных элементов по поверхности и полимерных электронагревателей не превышал ± 7 Ом, средняя температура поверхности составляла 110oC, а ее разброс 4-8oC.

Таким образом предложенное новое техническое решение является воспроизводимым в условиях промышеленного производства полимерных электронагревателей и характеризуется соответствием критерию "Промышленная пнименимость", т.е. уровню изобретения.

На его создание и использование целесообразно обеспечение защиты исключительных прав патентом.

Похожие патенты RU2074519C1

название год авторы номер документа
ГИБКИЙ ЭЛЕКТРОНАГРЕВАТЕЛЬ 2002
  • Мурашов Б.А.
  • Офицерьян Р.В.
  • Офицерьян А.Р.
RU2234822C2
ГИБКИЙ НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ 2008
  • Офицерьян Роберт Вардгесович
  • Локтионов Геннадий Александрович
  • Сычугов Сергей Николаевич
  • Мурашов Борис Арсентьевич
  • Офицерьян Армен Робертович
RU2371886C1
Способ изготовления резистивного элемента для полимерного электронагревателя 1991
  • Мурашов Борис Арсентьевич
  • Челышева Галина Алексеевна
  • Шумаев Сергей Васильевич
SU1793564A1
ГИБКИЙ НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2001
  • Офицерьян Р.В.
  • Офицерьян А.Р.
RU2216130C2
ЭПОКСИДНОЕ СВЯЗУЮЩЕЕ ДЛЯ АРМИРОВАННЫХ ПЛАСТИКОВ 2001
  • Мурашов Б.А.
  • Офицерьян Р.В.
  • Офицерьян А.Р.
RU2215759C2
ГИБКИЙ НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2001
  • Офицерьян Р.В.
  • Офицерьян А.Р.
RU2234820C2
ТРУБОПРОВОД С ЭЛЕКТРОПОДОГРЕВОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2004
  • Офицерьян Армен Робертович
  • Чехин Андрей Фотиевич
  • Офицерьян Роберт Вардгесович
RU2285188C2
СТЕКЛОПЛАСТИКОВАЯ ТРУБА-ОБОЛОЧКА С ПОДОГРЕВОМ 2008
  • Офицерьян Роберт Вардгесович
  • Кульков Александр Алексеевич
  • Соболь Леонид Абрамович
  • Виноградов Евгений Александрович
  • Офицерьян Армен Робертович
RU2393374C2
ГИБКИЙ НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ 1999
  • Офицерьян Р.В.
  • Скиба А.О.
RU2155461C1
Способ изготовления полимерного электронагревателя 1978
  • Соболь Леонид Абрамович
  • Анашкин Владимир Николаевич
  • Заболотский Александр Юрьевич
  • Орлов Сергей Яковлевич
  • Копылов Виктор Васильевич
  • Авдеев Владимир Сергеевич
SU782187A2

Иллюстрации к изобретению RU 2 074 519 C1

Реферат патента 1997 года СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО ЭЛЕКТРОНАГРЕВАТЕЛЯ

Изобретение относится к области электротермии и может быть использовано при производстве полимерных, например, стеклопластиковых электронагревателей. В способе изготовления полимерного, например, стеклопластикового электронагревателя, наносят на электроизоляционную подложку путем ее пропитки с уплотнением токопроводящего слоя на основе углерода элементного, графита и модифицированной феноло-формальдегидной смолы с образованием резистивного элемента. Наносят на него слои, пропитанные эпоксидным или эпоксифенольным, или феноло-формальдегидным связующим для образования электроизоляционного покрытия. Затем прессуют все слои при соответствующих температурно-временных режимах и давлении резистивный элемент перед нанесением на него электроизоляционного покрытия стопируют с аналогичными резистивными элементами и в стопированном виде термообрабатывают (отверждают) при температуре 130 - 140oС в течение 10 - 12 мин на каждый миллиметр толщины. Стопы. После термообработки извлекают из стопы, каждый резистивный элемент и наносят на него слои электроизоляционного покрытия с содержанием связующего в прилегающих к резистивному элементу слоях в 1,2 - 1,27 раза меньшем, чем в наружных, равном 40 - 47 мас.%. Технический результат от изобретения заключается в уменьшении брака полимерных электронагревателей по сопротивлению (мощности) и температурному полю, повышении их надежности и долговечности в процессе эксплуатации. 3 табл.

Формула изобретения RU 2 074 519 C1

Способ изготовления полимерного, например стеклопластикового, электронагревателя, при котором наносят на электроизоляционную подложку путем ее пропитки с уплотнением токопроводящий слой на основе углерода элементного, графита и модифицированной фенолоформальдегидной смолы с образованием резистивного элемента, наносят на него слои, пропитанные эпоксидным, или эпоксифенольным, или фенолоформальдегидным связующим для образования электроизоляционного покрытия с последующим прессованием всех слоев при соответствующих температурно-временных режимах и давлении, отличающийся тем, что резистивный элемент перед нанесением на него электроизоляционного покрытия стопируют с аналогичными резистивными элементами и в стопированном виде термообрабатывают (отверждают) при 130 140oС в течение 10 12 мин на каждый миллиметр толщины стопы, после термообработки извлекают из стопы каждый резистивный элемент и наносят на него слои электроизоляционного покрытия с содержанием связующего в прилегающих к резистивному элементу слоях, в 1,2 - 1,27 раза меньшим, чем в наружных, равным 40 47 мас.

Документы, цитированные в отчете о поиске Патент 1997 года RU2074519C1

0
  • Л. М. Абрамов, И. Б. Барденштейн, С. Бондаренко,Л. В. Вайсер,
  • В. Н. Вартересов К. А. Кадыри
SU180270A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Устройство для резервированного питания нагрузки 1979
  • Бычков Олег Владимирович
  • Членов Анатолий Николаевич
SU860213A1
Машина для изготовления проволочных гвоздей 1922
  • Хмар Д.Г.
SU39A1
Способ изготовления полимерного электронагревателя 1975
  • Анашкин Владимир Николаевич
  • Копылов Виктор Васильевич
  • Орлов Сергей Яковлевич
  • Смыслов Владимир Иванович
  • Миронов Анатолий Константинович
  • Куценко Александр Стефанович
  • Соболь Леонид Абрамович
  • Шахов Владимир Александрович
SU598271A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1

RU 2 074 519 C1

Авторы

Мурашов Борис Арсентьевич

Безукладов Владимир Иванович

Орлов Владимир Яковлевич

Офицерьян Роберт Вардгесович

Шумаев Сергей Васильевич

Даты

1997-02-27Публикация

1994-05-31Подача