СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ Российский патент 1997 года по МПК C21D8/12 H01F1/04 

Описание патента на изобретение RU2078145C1

Изобретение относится к области металлургии, в частности, к способам производства изотропных сталей.

Технология производства изотропной электротехнической стали включает горячую прокатку стали с последующей смоткой ее в рулоны при температуре выше 500oС [1] Известны способы производства изотропных электротехнических сталей, включающие нормализацию горячекатаного листа при температуре 700-1000oC (2), 815-1148oC (3) 850-900oC (4), 900-1000oC (5).

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому решению является способ производства листов из нетекстурованной кремнистой стали с высокими электромагнитными свойствами, включающий отжиг горячекатаных листов при температуре 700-950oC в течение от 2 мин до 20 ч, холодную прокатку отожженного листа до окончательного размера и отжиг при 750-1000oC (6).

Данный способ выбран в качестве прототипа. Общим недостатком вышеуказанных способов и прототипа является то, что режимы нормализации устанавливаются независимо от температуры смотки в рулоны горячекатаной стали. Это приводит к тому, что при несогласованности температурных режимов смотки и нормализации будет иметь место разброс в структуре нормализованной стали и, соответственно, снижение среднего уровня магнитных свойств готовой стали. Этот недостаток можно устранить, если проводить корректировку температуры нормализации, исходя из фактических режимов смотки.

Для снижения удельных потерь на перемагничивание в способе производства изотропной электротехнической стали, включающим выплавку стали с содержанием Si 2-3,5% горячую прокатку, смотку горячекатаной стали в рулоны, нормализацию распущенной стали, холодную прокатку на конечную толщину, отжиг холоднокатаной стали, температуру нормализации (tно) устанавливают в зависимости от температуры смотки (tсм) по соотношению:
tно(oC) 1,5•tсм(oC 70oC±5(oC) (I)
Известно, что на уровень удельных потерь существенное влияние оказывает количество дисперсных частиц в нормализованной стали [7] чем меньше дисперсных фаз, тем ниже потери на перемагничивание в готовой стали. Дисперсные частицы (в основном, нитриды алюминия) выделяются преимущественно на стадии смотки горячекатаных рулонов. Причем, чем выше температура смотки, тем больше количество выделившихся дисперсных частиц [8] Такая зависимость связана с тем, что максимальная скорость выделения дисперсных нитридов алюминия (при отсутствии промежуточной закалки полосы) наблюдается в диапазоне 750-800oC [9] По этой причине температуру смотки горячекатаной стали ограничивают диапазоном, например, на НЛМК 590-660oC. При температурах более 800oC скорость выделения AlN также падает, но увеличивается скорость коалесценции дисперсных фаз. По этой причине, если установлена высокая температура смотки (не менее 750oC), то снижения количества дисперсных частиц за счет развития коалесценции необходимо увеличить температуру нормализации. В то же время оптимальная температура нормализации ограничена сверху из-за увеличения зоны внутреннего окисления с повышением температуры.

Таким образом, для снижения удельных потерь температуру нормализации необходимо корректировать в зависимости от температуры смотки. Эта зависимость получена экспериментальным путем.

Способ опробован в условиях Ново-Липецкого меткомбината, на металле 2 плавок содержанием Si 3,14 C 0,020 Al 0,45 Mn 0,30 (пл.1) и Si 2,86 C 0,029 Al 0,33 Mn 0,25 (пл.2).

Горячую прокатку металла проводили на толщину 2,2 мм. Далее проводили смотку горячекатаного металла при температурах, обычно устанавливаемых в ЛПЦ-3 НЛЦК: 590, 630, 660oC. При этих температурах делали выдержку в 3 ч. Необходимую температуру нормализации рассчитывали из уравнения (I). Далее, после зачистки металла проводили однократную холодную прокатку на толщину 0,5 мм. Далее холоднокатаный металл обезуглероживали при t 830oC и подвергали заключительному отжигу при t 1000oC.

За обработку по прототипу принимали обработку, включающую нормализацию при tно 750oC и 910oC.

В таблице 1 приведены результаты замера удельных потерь на образцах, прошедших обработку по различным режимам. Из представленных в таблице 1 данных видно, что проведение нормализации при температурах, рассчитанных по формуле (I), позволяет достичь уровня потерь в среднем 2,74 Вт/кг для пл.1 (обр. 3, 4, 5, 10, 11, 12, 17, 18, 19) и 2,77 Вт/кг для пл.2. В тоже время нормализация при других температурах, но в диапазоне 805-910oC (обр. 2, 6, 7, 9, 13, 14, 16, 20) обеспечила уровень удельных потерь в среднем 2,81 (для пл.1) и 2,84 (для пл.2) Вт/кг, а нормализация по прототипу 2,83 (для пл.1) и 2,87 (для пл.2) Вт/кг.

Таким образом, проведение нормализации при температурах, определяемых по формуле (I), позволяет снизить удельные потери на 0,07 0,09 вт/кг по сравнению с другими режимами нормализации.

Похожие патенты RU2078145C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ 1999
  • Настич В.П.
  • Чеглов А.Е.
  • Барятинский В.П.
  • Миндлин Б.И.
  • Парахин В.И.
  • Долматов А.П.
  • Милованов А.А.
RU2155233C1
СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2001
  • Настич В.П.
  • Заверюха А.А.
  • Миндлин Б.И.
  • Чеглов А.Е.
  • Тищенко А.Д.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Рындин В.А.
RU2203332C2
Способ производства электротехнической изотропной стали 2021
  • Бахтин Сергей Васильевич
  • Удовенко Николай Петрович
  • Бабушко Юрий Юрьевич
  • Барыбин Владимир Алексеевич
RU2775241C1
СПОСОБ ПРОИЗВОДСТВА ТЕХНОЛОГИЧНОЙ ПРИ ВЫРУБКЕ ЭЛЕМЕНТОВ МАГНИТОПРОВОДОВ ХОЛОДНОКАТАНОЙ СВЕРХНИЗКОКРЕМНИСТОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1996
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Настич В.П.
  • Лосев К.Ф.
  • Миндлин Б.И.
  • Парахин В.И.
RU2102503C1
СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1998
  • Настич В.П.
  • Заверюха А.А.
  • Миндлин Б.И.
  • Логунов В.В.
  • Гвоздев А.Г.
  • Тищенко А.Д.
  • Чеглов А.Е.
RU2133285C1
СПОСОБ ТЕРМООБРАБОТКИ ХОЛОДНОКАТАНЫХ ПОЛОС ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Настич В.П.
  • Лосев К.Ф.
  • Миндлин Б.И.
  • Парахин В.И.
RU2081190C1
СПОСОБ ПРОИЗВОДСТВА АНИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2009
  • Ларин Юрий Иванович
  • Поляков Михаил Юрьевич
  • Минеев Фарид Васильевич
RU2403293C1
Способ получения изотропной электротехнической стали 2021
  • Губанов Олег Михайлович
RU2762195C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ 2002
  • Настич В.П.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Барыбин В.А.
  • Парахин В.И.
RU2219253C2
СПОСОБ ПРОИЗВОДСТВА ЭЛЕКТРОТЕХНИЧЕСКОЙ АНИЗОТРОПНОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Барятинский В.П.
  • Поляков М.Ю.
RU2082772C1

Иллюстрации к изобретению RU 2 078 145 C1

Реферат патента 1997 года СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ

Изобретение относится к области металлургии и может быть использовано при производстве изотропной электротехнической стали. Сущность изобретения: способ включает выплавку стали с содержанием кремния: Si = (2 - 3,5) мас.%, прокатку, смотку горячекатаной стали в рулоны, нормализацию распущенной стали, холодную прокатку на конечную толщину, отжиг холоднокатаной стали. Температуру нормализации устанавливают в зависимости от температуры смотки по соотношению: Tно(oC) = 1,5 to см (oC) - 70(oC) ± 5 (oC). Данный способ позволяет снизить удельные потери на перемагничивание по сравнению с известными. 1 табл.

Формула изобретения RU 2 078 145 C1

Способ производства изотропной электротехнической стали, включающий выплавку стали с содержанием 2,0 3,5 мас. кремния, горячую прокатку, нормализацию, холодную прокатку на конечную толщину, отжиг холоднокатаной стали, отличающийся тем, что перед нормализацией осуществляют смотку горячекатаной стали в рулон, а при нормализации распущенной стали температуру T°но

устанавливают в зависимости от температуры смотки t°см
по соотношению T°но
= 1,5t°см
- 70±5,°C.о

Документы, цитированные в отчете о поиске Патент 1997 года RU2078145C1

Патент США N 4204890, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 078 145 C1

Авторы

Настич В.П.

Миндлин Б.И.

Парахин В.И.

Ларин Ю.И.

Термер Э.Р.

Гольдштейн В.Я.

Серый А.В.

Даты

1997-04-27Публикация

1993-06-15Подача