СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ РЕЗКИ ПРОВОЛОЧНЫМ ЭЛЕКТРОДОМ-ИНСТРУМЕНТОМ Российский патент 1997 года по МПК B23H3/00 B23H7/38 

Описание патента на изобретение RU2078654C1

Изобретение относится к области технологии машиностроения, к электрофизикохимической обработке деталей машин и касается способа электрохимической обработки деталей непрофилированным электродом-проволокой. Изобретение может быть использовано при электрохимической резке деталей в различных отраслях промышленности.

Известен способ электрофизикохимической обработки деталей машин, когда к электрод-инструменту и детали подключают основной источник технологического напряжения и дополнительный источник. При этом работу источников осуществляют последовательно [1]
Известны также устройства для электрохимической обработки деталей машин путем резки, которые включают непрофилированный электрод-проволоку, образующий совместно с деталью межэлектродный промежуток [2, 3] Устройство включает также источник технологического напряжения в соответствующей полярности, подключенный к межэлектродному промежутку. Имеются также механизм перемотки и рабочей подачи электрода-инструмента, система подачи в межэлектродный промежуток рабочей жидкости-электролита.

К недостаткам известных технических решений относятся малая производительность, нестабильность процесса, особенно при электрохимической резке относительно толстых заготовок. Это обусловлено сложностью оптимального обеспечения рабочей жидкостью зоны обработки и трудностью эффективной эвакуации продуктов анодного растворения материала заготовки.

Наиболее близким по технической сущности к изобретению является техническое решение [4] выбранное авторами в качестве прототипа. В известном изобретении электрохимическую резку ведут непрофилированным электродом-проволокой, на межэлектродный промежуток подают технологическое напряжение, а рабочую жидкость-электролит подают в зону обработки через сопло. Устройство для осуществления известного способа обработки включает непрофилированный электрод-проволоку, источник технологического напряжения, механизмы перемотки и рабочей подачи электрода-проволоки и обрабатываемой детали, систему прокачки рабочей жидкости. Недостатки прототипа в целом такие же, какие были отмечены при рассмотрении аналогов изобретения.

Целью изобретения является повышение производительности и стабильности процесса электрохимической резки непрофилированным электродом-проволокой, упрощение конструкции устройства.

Поставленная цель достигается созданием оптимальных магнито-гидродинамических сил в межэлектродном промежутке, что сопровождается повышением эффективности обмена рабочей жидкости в зоне обработки и, как следствие, повышением производительности и стабильности процесса. При этом в известном способе, когда электрод-инструмент и деталь подключают к источнику технологического напряжения, подают в зону обработки электролит и осуществляют перемотку электрода-проволоки и его рабочую подачу к детали, предлагается через электрод-инструмент в зоне обработки дополнительно пропустить униполярный ток для создания дополнительного давления прокачки, а величину тока определять по формуле:

где ε3 электрохимический эквивалент, кг/Кл;
ρз плотность материала заготовки, кг/м3;
lп периметр профиля электрода-инструмента, м;
bз длина участка электрода-инструмента в рабочей зоне, м;
Pпр дополнительное давление прокачки рабочей жидкости, Па;
vп скорость подачи электрода-инструмента, м/с.

Проведенный литературный и патентный анализ показывает, что отсутствуют аналоги отличительных признаков заявляемого технического решения, которые квалифицируются как существенные.

Изобретение поясняется фиг. 1 и фиг. 2. На фиг. 1 представлен общий вид заявляемого технического решения. Рабочая зона при электрохимической резке - межэлектродный промежуток поз. 1 заполнен рабочей жидкостью электролитом. Между обрабатываемой деталью поз. 2 и проволочным электрод-инструментом поз. 3 с радиусом rп имеется зазор a. При обработке между электродами поз.2 и поз. 3 протекает технологический ток плотностью J. Электрод-инструмент поз. 3 имеет рабочую подачу по направлению к детали, причем за ним образуется область реза поз. 4.

В соответствии с сущностью изобретения по проволочному электрод-инструменту поз. 3 пропускают дополнительно униполярный ток Iд. За счет наличия тока Iд вокруг проволочного электрод-инструмента поз. 3 формируется круговое магнитное поле с индукцией . На основании закона электромагнитной силы на каждый малый объем электролита поз. 5 действует сила , причем [5]

Следовательно, в рабочей жидкости, окружающей проволочный электрод-инструмент поз. 3 создаются объемные силы , которые действуют вдоль поверхности инструмента. Благодаря этому в межэлектродном промежутке создается усилие, обеспечивающее повышение эффективности прокачки электролита через межэлектродный промежуток и эвакуации продуктов анодного растворения материала детали. На фиг. 1 электрод-инструмент поз. 3 показан в виде проволоки кругового сечения, что является лишь частным случаем широкого класса непрофилированных электрод-инструментов [4] Естественно, что заявляемое техническое решение может быть реализовано для электрод-инструментов в виде ленты и др.

Дополнительные усилия для прокачки электролита от силы преимущественно формируются вблизи передней (фиг. 1) поверхности электрод-инструмента поз. 3, где плотность рабочего тока максимальная. За электрод-инструментом в области реза поз. 4 плотность тока существенно меньше, поэтому дополнительные усилия, воздействующие на электролит, невелики. Следовательно, на задней (фиг. 1) поверхности электрод-инструмента поз. 3 движение электролита малоинтенсивное, что способствует снижению негативного явления электрохимического растравливания поверхности детали.

На фиг. 2 представлено устройство для осуществления заявляемого способа электрохимической резки. Устройство включает проволочный электрод-инструмент поз. 3, традиционные узлы механизмы перемещения и перемотки электрод-инструмента, систему подачи рабочей жидкости в зону обработки (для упрощения последние на фиг. 2 не показаны). Источник технологического напряжения поз. 6 подключен к детали поз. 2 и электрод-инструменту поз. 3. Дополнительный источник поз. 7, создающий ток Iд, подключен к электрод-инструменту поз. 3 в двух местах вне зоны обработки таким образом, что источники поз. 6 и поз. 7 имеют только одну общую точку. Следовательно, электрические цепи этих источников работают независимо. Деталь поз. 2 и электрод-инструмент поз. 3 размещены в рабочей жидкости-электролите поз. 8. Устройство снабжено дополнительным источником питания, подключаемым так, чтобы не создать общей электрической цепи с технологическим источником питания.

Межэлектродный зазор a между деталью и электрод-инструментом можно считать имеющим цилиндрическую форму на передней поверхности инструмента. При обработке плотность тока составит:

где U технологическое напряжение источника питания поз. 6;
Φа и Φк анодное и катодное падение напряжения;
σ электропроводность раствора электролита.

Поскольку электрод-инструмент имеет подачу в направлении к детали, на передней кромке электрод-инструмента плотность тока составляет:

где ρз и εз соответственно плотность и электрохимический эквивалент материала заготовки;
A выход по току.

Магнитная индукция в межэлектродном промежутке согласно закону полного тока равна:

где μo магнитная постоянная;
r расстояние от оси инструмента (фиг. 1).

В выражении (5) расстояние r от оси инструмента изменяется в пределах rп≅r≅rп+a, где rп радиус проволочного электрод-инструмента. Поэтому среднее значение магнитной индукции в межэлектродном промежутке составит:

Среднее значение объемной силы с рабочей стороны электрод-инструмента равно:

На длине межэлектродного промежутка bз создается давление прокачки электролита:
Pпр fсрbз. (8)
По полученным выражениям можно определить величину тока Iд, обеспечивающего необходимое давление прокачки:

Направление тока Iд должно быть таким, чтобы дополнительное ускорение раствора совпадало с направлением перемотки проволоки и направлением принудительной прокачки.

Для оценки эффективности заявляемого изобретения проведены теоретические исследования. Известно [3] что пороговое значение тока, при котором возможна эффективная прокачка, определяется критерием Гартмана:

где η динамическая вязкость раствора электролита;
vэ.ср средняя скорость электролита.

По полученным данным, чем меньше отношение Ja/vэ.ср, тем слабее гидродинамические ограничения скорости подачи. Прокачка интенсифицируется с ростом зазора a, снижением вязкости электролита, увеличением тока Iд. В реальных условиях электрохимической резки отношение Ja/vэ.ср 0,1.10 А.с/м2. Поэтому эффективность изобретения повышается при обеспечении условия:

В общем случае электрода-инструмента любого профиля, например квадратного, прямоугольного (ленточного) и прочих, среднюю магнитную индукцию Bср можно также рассчитать по формуле (6). Поскольку согласно закону полного тока индукция Bср определяется длиной контура, то вместо радиуса в формуле (6), (7), (9) следует подставлять эквивалентную величину lп/2π где lп длина периметра любого профиля сечения электрода-инструмента. Например, для ленточного электрода, у которого длина сторон профиля c и d, длина периметра lп 2(с+d).

Пример. Заявляемое техническое решение было реализовано в лабораторных условиях на модернизированной электрохимической установке. Обрабатывали образцы листовой стали 45 ГОСТ 1050-74 толщиной 10 мм в 10%-ном растворе нитрата натрия при температуре 22oC. Технологическое напряжение составляло 10 В, скорость подачи электрод-инструмента 1 мм/мин. Для получения дополнительного тока применялся понижающий трансформатор, имеющий на второй обмотке выпрямительный диодный мост и проволочный резистор. Использовался проволочный латунный электрод-инструмент диаметром 1 мм, к которому на расстоянии 20 мм вне зоны обработки подключали дополнительный источник питания. Дополнительный ток, как показали оценки, должен составлять порядка 100 А из следующих соображений: плотность материала (железо) - 7,8•103 кг/м3, радиус инструмента 0,5 мм 5•10-4 м, электрохимический эквивалент 0,29•10-6 кг/Кл, толщина детали 10 мм•10-2 м, скорость инструмента 1 мм/мин 1,7•10-5 м/с, давление прокачки 1,5•105Па. Результаты проведенных опытов в сравнении с прототипом показали, что процесс электрохимической резки проволочным электрод-инструментом протекает стабильно, с высокой эффективностью удаления из межэлектродного промежутка продуктов растворения. Более того, при небольших скоростях подачи инструмента можно вообще отказаться от принудительной прокачки электролита через зону обработки. Для толстых заготовок заявляемое техническое решение может обеспечить увеличение производительности за счет роста подачи инструмента.

Похожие патенты RU2078654C1

название год авторы номер документа
ЭЛЕКТРОД-ИНСТРУМЕНТ 1992
  • Никифоров Александр Владимирович
  • Волков Юрий Степанович
  • Кананадзе Сергей Александрович
RU2086367C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЦВЕТНЫХ ИЗОБРАЖЕНИЙ НА МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ МНОГОВАЛЕНТНЫХ МЕТАЛЛОВ ТИПА ТИТАНА 1995
  • Никифоров Александр Владимирович
  • Волков Юрий Степанович
  • Горский Игорь Михайлович
RU2093325C1
СВЕЧА ЗАЖИГАНИЯ ДЛЯ ДВС 1995
  • Никифоров Александр Владимирович
  • Волков Юрий Степанович
  • Горский Игорь Михайлович
RU2111593C1
СВЕЧА ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1995
  • Никифоров Александр Владимирович
  • Волков Юрий Степанович
  • Тюрин Сергей Архипович
  • Катерин Евгений Иванович
  • Горский Игорь Михайлович
RU2084998C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ НЕПРОФИЛИРОВАННЫМ ЭЛЕКТРОДОМ-ИНСТРУМЕНТОМ И УСТРОЙСТВА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Салахутдинов Ринат Мияссарович
  • Зайцев Александр Николаевич
  • Безруков Сергей Викторович
  • Косарев Тимофей Владимирович
  • Идрисов Тимур Рашитович
RU2647413C2
ИНСТРУМЕНТ ДЛЯ КОМБИНИРОВАННОЙ ОБРАБОТКИ 1997
  • Никифоров А.В.
  • Волков Ю.С.
  • Брагин И.Н.
  • Жаворонкова О.А.
  • Денисов С.А.
  • Горский И.М.
  • Моисеев А.Ю.
RU2117566C1
Способ размерной электрохимической обработки и устройство для его осуществления 1984
  • Никифоров Александр Владимирович
  • Ашмарин Валерий Сергеевич
  • Ермаков Юрий Михайлович
  • Волков Юрий Степанович
SU1324786A1
Способ резки сердечника ленточного магнитопровода 2019
  • Аверин Федор Владимирович
  • Савинова Ольга Владимировна
  • Гиндулин Рифкат Махмутович
  • Десяткин Вячеслав Юрьевич
  • Максимов Дмитрий Анатольевич
RU2711459C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ НЕПРОФИЛИРОВАННЫМ ЭЛЕКТРОДОМ-ИНСТРУМЕНТОМ 1991
  • Гимаев Насих Зиятдинович
  • Зайцев Александр Николаевич
  • Сибагатуллин Жамиль Хабибуллович
RU2028885C1
УСТАНОВКА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВИНТОВОГО ЗУБЧАТОГО ПРОФИЛЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ В ОТВЕРСТИИ ТРУБЧАТОЙ ЗАГОТОВКИ 2014
  • Андоскин Владимир Николаевич
  • Литвинов Александр Владимирович
  • Журавлев Павел Михайлович
  • Назаров Олег Борисович
  • Шишигин Вадим Викторович
  • Чернядьев Игорь Никитич
  • Хайруллин Дмитрий Наилевич
RU2578895C2

Иллюстрации к изобретению RU 2 078 654 C1

Реферат патента 1997 года СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ РЕЗКИ ПРОВОЛОЧНЫМ ЭЛЕКТРОДОМ-ИНСТРУМЕНТОМ

Использование: электрохимическая резка деталей электродом-проволокой. Сущность изобретения: проволочный электрод-инструмент и деталь подключают к источнику технологического напряжения, подают в зону обработки электролит и осуществляют перемотку электрода и его рабочую подачу к детали. При этом через электрод-инструмент в зоне обработки дополнительно пропускают униполярный ток для создания дополнительного давления прокачки. При пропускании дополнительного тока, величина которого определяется по приведенной зависимости, вокруг проволочного электрода возникает магнитное поле, воздействующее на электролит и приводящее к повышению эффективности прокачки электролита через межэлектродный промежуток и эвакуации продуктов анодного растворения. 2 ил.

Формула изобретения RU 2 078 654 C1

Способ электрохимической резки проволочным электродом-инструментом, при котором электрод-инструмент и деталь подключают к источнику технологического напряжения, подают в зону обработки электролит и осуществляют перемотку электрода-проволоки и ее рабочую подачу к детали, отличающийся тем, что, с целью повышения производительности и стабильности процесса, через электрод-инструмент в зоне обработки дополнительно пропускают униполярный ток для создания дополнительного давления прокачки, а величину тока определяют по формуле

где εз электрохимический эквивалент, кг/Кл;
ρз плотность материала заготовки, кг/м3;
lп периметр профиля электрода-инструмента, м;
bз длина участка электрода-инструмента в рабочей зоне, м;
Pпр дополнительное давление прокачки электролита, Па;
vп скорость подачи электрода-инструмента, м/с.

Документы, цитированные в отчете о поиске Патент 1997 года RU2078654C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ электрохимической обработки титановых сплавов 1977
  • Бородин Валерий Владимирович
  • Никифоров Александр Владимирович
  • Проничев Николай Дмитриевич
  • Беляев Михаил Андреевич
  • Сенина Ольга Александровна
  • Тюрин Сергей Архипович
SU655494A1
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Артамонов Б.А
и др
Размерная электрическая обработка металлов
- М.: Высшая школа, 1978, с
Способ образования азокрасителей на волокнах 1918
  • Порай-Кошиц А.Е.
SU152A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Проклова В.Д
Электрохимическая обработка непрофилированным электродом-инструментом
- М.: Машиностроение, 1976, с.9
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО РАЗРЕЗАНИЯ ЭЛЕКТРОДОМ-ПРОВОЛОКОЙ 0
SU234084A1
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Волков Ю.С
Влияние статических электрического и магнитного полей на течение раствора в межэлектродном промежутке
Ж
"Электрофизические и электрохимические методы обработки", 1979, N 1, c
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 078 654 C1

Авторы

Никифоров Александр Владимирович

Волков Юрий Степанович

Горский Игорь Михайлович

Даты

1997-05-10Публикация

1994-02-11Подача