АЛЮМИНИЕВЫЙ ПОРОШОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 1997 года по МПК B22F9/08 C22C1/04 

Описание патента на изобретение RU2081733C1

Изобретение относится к области порошковой металлургии, в частности к составам и способам получения порошкового алюминия с присадкой титана, используемого в химической промышленности в качестве катализатора при производстве алюминийорганических соединений, гидридов и других областях органического синтеза.

Известны алюминиевые порошки ПА (ГОСТ 6058-73), содержащие 98-99% активного алюминия с весьма широким диапазоном дисперсности (крупность частиц от 0 до 2 мм). Частицы таких порошков покрыты плотной оксидной пленкой, обеспечивающей защиту алюминия от дальнейшего окисления.

Однако из-за высоких защитных свойств оксидной пленки на частицах порошков ПА последние мало пригодны для использования в оргсинтезе, что необходима открытая поверхность алюминия, свободная от защитных пленок. Содержание активного алюминия в ряде порошков ПА на уровне 98% что является часто низким для оргсинтеза. Ввиду этого в этих областях они нашли весьма ограниченное применение.

Наиболее близким техническим решением, нашедшим применение в качестве катализатора в оргсинтезе, является алюминиевый порошок с присадкой титана марки АСД-Т (ТУ 48-5-230-82). Данный порошок имеет содержание активного алюминия не менее 99% и титана в пределах 0,35-0,6% крупность частиц его не более 125 мкм.

Присадка титана в таком порошке обеспечивает образование на поверхности частиц алюминия интерметаллида АI-Ti. В условиях оргсинтеза (при производстве изопренового каучука, высокомолекулярных спиртов, алюминийорганических соединений) данный интерметаллид разлагается и открывает неокисленную поверхность алюминия, обеспечивая его каталитическое действие.

Однако чтобы обеспечить максимальную каталитическую способность алюминиевого порошка, необходимо оптимальное содержание титана в нем. При малых его содержаниях на поверхности частиц алюминиевого порошка сохраняется существенное количество оксидной пленки, которая уменьшает рабочую поверхность порошка и снижает его каталитическую способность. При больших содержаниях титана на поверхности частиц алюминия образуется толстый плотный слой интерметаллида АI-Ti, который в условиях оргсинтеза разлагается неполностью. Сохранившийся интерметаллид частично экранирует поверхность чистого алюминия и также снижает каталитическую способность. В обоих случаях слишком малое и слишком большое содержание титана приводят к повышенному расходу порошка при оргсинтезе. Поэтому порошок АСД-Т, в котором содержание титана (0,35-0,6%), и дисперсность (мельче 125 мкм), предусмотренные ТУ 48-5-230-82, сравнительно высоки, непригоден для целого ряда областей оргсинтеза, в частности при производстве алюминийорганических соединений. Для использования в этих областях необходимы порошки с более низким содержанием титана и более грубым гранулометрическим составом (с крупностью частиц до 0,5 мм), имеющие при этом содержание активного алюминия как и в порошке АСД-Т.

Целью изобретения является получение алюминиевого порошка с присадкой титана, пригодного для использования в тех областях оргсинтеза, где стандартный порошок АСД-Т непригоден.

Это достигается тем, что производимый и используемый алюминиевый порошок содержит титан в количестве 0,05-0,34% и имеет размер частиц до 0,5 мм. Такой порошок отвечает требованиям потребителей и пригоден для областей оргсинтеза, в частности, при производстве алюминийорганических соединений, где стандартный порошок АСД-Т неприменим.

Наиболее распространенным способом получения металлических порошков, в том числе алюминиевых, является распыление расплавленного металла сжатым газом. (Гопиенко В.Г. и др. Производство и применение алюминиевых порошков и пудр. М. Металлургия, 1980, с. 13).

Известный порошок АСД-Т получают способом, защищенным авт. свидетельством N 277525 B 22 А 9/00, характеризующимся тем, что расплавленный металл или сплав распыляют инертным газом, нагретым до температуры, близкой к температуре плавления с одновременной подачей в зону распыления холодного инертного газа. Распыление производят с применением трехкомпонентного эжекционного распыливающего устройства, которое обеспечивает подачу и распыление струи металла горячим газом и подачу направленного потока холодного газа.

Для изготовления порошка марки АСД-Т используется алюминий первичный не ниже марки А, по ГОСТ 11069-74 и титан губчатый не ниже марки ТГ-120 по ГОСТ 17746-79.

Основные технологические параметры производства такого порошка: температура распыленного расплава 900-950oС; температура распыляющего газа 420-500oС; давление распыляющего газа 1,6-1,8 МПа.

Для достижения технического результата, то есть получения алюминиевого порошка с присадкой титана с заданным содержанием (0,05-0,34%) и требуемой гранулометрией (до 0,5 мм), в известном способе получения порошка марки АСД-Т путем распыления расплава нагретым инертным газом (азотом) с одновременным охлаждением образующегося порошка холодным азотом изменяются термодинамические параметры, а именно: температура распыляемого расплава 850-880oС; температура распыливающего газа 300-400oС; давление распыливающего газа 1,0-1,5 МПа.

Более низкая, чем при производстве АСД-Т, температура распыляемого металла способствует снижению растворимости титана в алюминии и обеспечивает его содержание в готовом порошке в требуемых пределах 0,05-0,34% Пониженное давление и температура распыляющего газа обеспечивают получение порошка большей крупности с размером частиц до 0,5 мм.

Данные термодинамические параметры определены на основании серии экспериментальных работ, проведенных в промышленных условиях, и обеспечивают требуемое качество алюминиевого порошка, удовлетворяющее потребителя.

С целью получения заданного потребителем химсостава, в каждом конкретном случае указанные параметры могут меняться, но не выходят за пределы, предусмотренные заявкой.

Сущность способа поясняется примерами конкретного получения порошков с заданными свойствами.

На промышленной пульверизационной установке производили получение алюминиевых порошков с присадкой титана. Исходным металлом был жидкий алюминий, доставляемый из электролизного цеха. Металл заливался в специальную пульверизационную печь с электрическим обогревом.

В жидкую ванну вводилось необходимое количество титана в виде твердой губки, расплав тщательно перемешивался, температура его доводилась до требуемой путем задания необходимых параметров системой автоматического управления печью. После анализа приготовленного расплава на содержание титана и соответствия его требуемой норме расплав распылялся эжекционной форсункой, аналогичной устройству по авт. свид. СССР N 277525. Распыление производилось в герметичную камеру (пылеосадитель) с сухим улавливанием распыленного продукта. В качестве распыливающего газа использовался азот с содержанием кислорода до 0,8 об. подогреваемый до требуемой температуры в специальной печи с автоматической регулировкой. Для исключения слипания частиц образующегося в результате распыления расплава порошка, одновременно в зону распыления через обдувочное кольцо подавали холодный азот (с температурой производственного помещения).

Регулирование качества получаемых продуктов распыления производилось путем изменения основных технологических параметров давления и температуры распыливающего газа, температуры расплава.

Получаемый порошок из пылеосадителя через грохот разгружался в специальные контейнеры и анализировался в соответствии с требованиями ТУ 48-5-230-82.

Результаты анализов алюминиевых порошков с присадкой титана, полученных при различных технологических режимах, представлены в таблице. Из анализа таблицы видно, что предусмотренные изобретением технологические режимы (примеры 2-4, 7-9, 11-12) обеспечивают получение порошков с присадкой титана в требуемых пределах 0,05-0,34% содержание активного алюминия не менее 99% дисперсности до 500 мкм с выходом годного продукта более 90% Все получаемые в этих условиях порошки с присадкой титана отвечают требованиям потребителя, то есть поставленный изобретением технический результат достигается.

Низкие температурные параметры и минимальное давление распыливающего газа обуславливают получение порошков с более низким содержанием титана или увеличивает содержание крупных фракций (примеры 2,7).

Высокое давление и температура распыливающего газа и расплава позволяют получать порошки с высоким до 0,34% содержанием титана и более тонкие (менее крупные) фракции (примеры 4,8).

При технологических режимах, выходящих за пределы, предусмотренные изобретением, содержание титана в получаемых порошках в необходимых пределах не обеспечивается, дисперсность продуктов также выходит за рамки требований (примеры 1, 5, 9, 10, 13). Требованиям потребителей они не соответствуют и, следовательно, не обеспечивают достижение технического результата.

Из приведенного описания видно, что аппаратурно-технологическая реализация предложенного способа не вызывает трудностей, так как он осуществляется уже на имеющемся оборудовании.

Преимущества предложенного способа перед известными заключаются в возможности получения алюминиевого порошка с заранее заданными потребителем свойствами за счет задания оптимальных параметров распыления, температуры расплава и дозировки компонентов; расширении области применения получаемого алюминиевого порошка в производствах органического синтеза; улучшении технико-экономических показателей как самого процесса получения алюминиевого порошка (за счет снижения содержания Тi и энергозатрат), так и при применении его за счет снижения расхода, которое обеспечивается повышением каталитической способности.

Похожие патенты RU2081733C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ПИРОТЕХНИЧЕСКОЙ АЛЮМИНИЕВОЙ ПУДРЫ 1995
  • Устич С.П.
  • Мананников Н.В.
  • Макаров В.Б.
RU2108534C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО ПОРОШКА 1990
  • Буньков В.Н.
  • Кондырев В.А.
  • Филимонов Н.Т.
  • Ковалев В.А.
  • Голубцов Л.С.
RU2026157C1
СФЕРИЧЕСКИЙ ПОРОШОК АЛЮМИНИЕВО-ЦИНКОВОГО СПЛАВА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2002
  • Гопиенко В.Г.
  • Петрович С.Ю.
  • Черепанов В.П.
  • Аликин В.Н.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
RU2233208C2
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ АЛЮМИНИЕВО-МАГНИЕВЫХ ПОРОШКОВ 2000
  • Волков И.В.
  • Галанов А.И.
  • Гопиенко В.Г.
  • Дежинов В.В.
  • Диков В.В.
RU2191659C2
СПОСОБ ОБЖИГА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА ПОСЛЕ КАПИТАЛЬНОГО РЕМОНТА 1996
  • Цымбалов С.Д.
  • Нечаев Г.П.
RU2101393C1
АЛЮМИНИЕВЫЙ ПОРОШОК С ВЫСОКОЙ УДЕЛЬНОЙ ПОВЕРХНОСТЬЮ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2001
  • Гопиенко В.Г.
RU2201844C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА 2001
  • Горбунов В.А.
RU2215803C2
СПОСОБ ВВОДА В ЭКСПЛУАТАЦИЮ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 1998
  • Деревягин В.Н.
RU2149922C1
ИМИТАТОР ГРАНУЛ ЯДЕРНОГО ТОПЛИВА 2003
  • Соломенцев С.Ю.
  • Александров А.Б.
  • Абиралов Н.К.
  • Горбунов В.А.
  • Колесник Н.Н.
  • Соломенцева И.В.
RU2248053C1
АЛЮМИНИЕВЫЙ СФЕРИЧЕСКИЙ ПОРОШОК ВЫСОКОЙ ДИСПЕРСНОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2002
  • Гопиенко В.Г.
  • Черепанов В.П.
  • Петрович С.Ю.
  • Фельдман В.Д.
  • Иванов А.П.
  • Волков И.В.
  • Мольков А.В.
  • Поляков С.В.
  • Голубцов Л.С.
RU2243857C2

Иллюстрации к изобретению RU 2 081 733 C1

Реферат патента 1997 года АЛЮМИНИЕВЫЙ ПОРОШОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к порошковой металлургии, в частности к производству алюминиевых порошков с присадкой титана, используемых в химической промышленности в качестве катализатора при производстве алюминийорганических соединений, гидридов, и других областях органического синтеза. Сущность изобретения заключается в том, что для увеличения каталитической способности алюминиевого порошка и расширения области его применения, он содержит, мас. %: алюминий не менее 99 и титан 0,05-0,34. Для получения алюминиевых порошков такого состава применяют способ распыления расплава инертными газами со следующими термодинамическими показателями процесса распыления: температура распыляемого расплава 850-880oС; температура распылевающего газа 300-400oС; давление распылевающего газа 1,0-1,5 МПа. В качестве распылевающего и охлаждающего газа используют инертный газ, например, азот, причем распыление расплава и охлаждение порошка осуществляются одновременно. В результате получают сплавы с заданным содержанием титана и крупностью частиц менее 0,5 мм с выходом годного продукта более 90%. 2 с.п. ф-лы, 1 табл.

Формула изобретения RU 2 081 733 C1

1. Алюминиевый порошок, содержащий титан, отличающийся тем, что он содержит компоненты при следующем соотношении, мас.

Титан 0,05 0,34
Алюминий Остальное
2. Способ получения алюминиевого порошка, включающий распыление расплава нагретым инертным газом и охлаждение распыленных частиц холодным инертным газом, отличающийся тем, что распыление осуществляют газом, нагретым до 300
400oС и давлении газа 1,0 1,5 МПа, при этом температуру расплава поддерживают 850 880oС.

Документы, цитированные в отчете о поиске Патент 1997 года RU2081733C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Приспособление для автоматической односторонней разгрузки железнодорожных платформ 1921
  • Новкунский И.И.
SU48A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНЫХ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ 0
SU277525A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 081 733 C1

Авторы

Безруков А.В.

Конопельченко В.П.

Нечаев Г.П.

Плаксин А.А.

Швецов О.М.

Щербаков В.К.

Даты

1997-06-20Публикация

1995-05-04Подача