Изобретение относится к химии органических соединений, конкретно к способам получения трифторметил-3,4-дихлорбензола.
Данное соединение применяется в органическом синтезе, в частности, является одним из основных исходных соединений при получении синтетического высокоэффективного пиретройда флувалината.
Известны лишь два способа получения трифторметил-3,4-дихлорбензола [1,2]
Нитрование трифторметил-4-хлорбензола с последующим восстановлением трифторметил-3-нитро-4-хлорбензола, диазотированием трифторметил-3-амино-4-хлорбензола и превращением сульфата диазония в целевой трифторметил-3,4-дихлорбензол [1]
Выход трифторметил-3,4-дихлорбензола по трифторметил-4-хлорбензолу 20-30% Недостатки способа: низкий выход и многостадийность схемы.
Второй способ хлорирование 3,4-дихлортолуола с последующим взаимодействием трихлорметил-3,4-дихлорбензола с трехфтористой сурьмой [2]
3,4-Дихлортолуол обрабатывают хлором в течение 10 ч при 160-190oC без катализатора. Образовавшийся трихлорметил-3,4-дихлорбензол (выход ≈93%) без выделения нагревают с трехфтористой сурьмой до начала реакции. Мольное соотношение трихлорметил-3,4-дихлорбензол: трехфтористая сурьма 1: 2,24. По завершении реакции реакционную смесь несколько раз промывают 6N соляной кислотой, затем водой. Выход трифторметил-3,4-дихлорбензола по 3,4-дихлортолуолу 59% по трихлорметил-3,4-дихлорбензолу ≈63% Недостатки способа: невысокий выход и неэкологичность из-за применения избытка трехфтористой сурьмы и образования большого количества кислых сточных вод. Так как этот способ является наиболее близким по техническому решению, он выбран в качестве прототипа.
Предлагаемый способ позволяет получить трифторметил-3,4-дихлорбензол с высоким выходом взаимодействием трифторметил-4-хлорбензола с элементарным хлором в присутствии катализатора [PCl4]+[FeCl4]-, который образуется при хлорировании железных стружек и треххлористого фосфора непосредственно в реакторе в трифторметил-4-хлорбензоле.
Этот катализатор комплекс пятихлористого фосфора с хлорным железом - при хлорировании органических соединений элементарным хлором применяется впервые. Предложенные ранее для хлорирования устойчивых к электрофильному замещению ароматических соединений с электрофильными заместителями катализаторы: хлорное железо, хлористый алюминий, серная кислота, реактив Зильберрада (однохлористая медь хлористый алюминий хлористый сульфурил) [3] оказались неэффективными (табл.1).
Процесс осуществляется при комнатной температуре в емкостном реакторе с барботером, мешалкой и термометром. Мольное соотношение реактивов: трифторметил-4-хлорбензол: хлор= 1: 1,1-1,2. По предложенному методу трифторметил-3,4-дихлорбензол получен с выходом до 92%
Трифторметил-3,4-дихлорбензол идентифицирован массхроматографией, спектром протонного ЯМР, соответствием определенных физических констант их значениям, приведенным в литературе [1] а также данными элементного анализа. Найдено: т. кипения 172,5-173,5oC; n
Высокий выход трифторметил-3,4-дихлорбензола, простота его выделения, использование выпускаемых нашей промышленностью доступных исходных соединений, экологичность и легкость оформления процесса обуславливают наибольшую технологичность предлагаемого способа по сравнению с прототипом.
Хлористый водород побочный продукт хлорирования, после поглощения водой может быть использован как соляная кислота.
Пример. В 4-горлый реактор емкостью 1 л, снабженный мешалкой, барботером, опущенным до дна реактора, термометром и обратным холодильником, соединенным со склянкой Тищенко с концентрированной серной кислотой, помещают 500 г (2,7688 моля) трифторметил-4-хлорбензола, 13,75 г (0,275 г ат) железных стружек и 18,7 г (0,1375 моля) треххлористого фосфора. При энергичном перемешивании при комнатной температуре (15-18oC) в реакционную массу в течение 10 ч пропускают 225-237 г (3,190-3,341 моля) хлора. По данным масс-хроматографического анализа смесь трифторметилхлорбензолов состоит из 90,8% целевого трифторметил-3,4-дихлорбензола (выход по взятому в реакцию трифторметил-4-хлорбензолу ≈90,5% ), 1,6% трифторметил-2,4-дихлорбензола и 7,6% исходного трифторметил-4-хлорбензола. Эту смесь переносят в колбу Клайзена и перегоняют при атмосферном давлении. Получают 453,8 г трифторметил-3,4-дихлорбензола с температурой кипения 172,0-173,5oC. Первая фракция 116,2 г с температурой кипения 115-171,5oC, по данным масс-хроматографии, содержит 53,8% трифторметил-3,4-дихлорбензола, 7,6% трифторметил-2,4-дихлорбензола и 38,6% трифторметил-4-хлорбензола. Эта фракция хлорируется в последующей операции получения целевого трифторметил-3,4-дихлорбензола. Единственный обнаруженный побочный продукт хлорирования трифторметил-4-хлорбензола - трифторметил-2,4-дихлорбензол легко отделяется перегонкой от трифторметил-3,4-дихлорбензола, благодаря значительно более низкой температуре кипения, равной 117-118oC [4]
Влияние на выход трифторметил-3,4-дихлорбензола количества катализатора, его отдельных компонентов, а также температуры представлено в табл.2.
Таким образом, целесообразно проведение хлорирования при температуре, близкой к комнатной. Дальнейшее увеличение количества катализатора по сравнению с приведенным в п.2 табл. 2 затрудняет выделение трифторметил-3,4-дихлорбензола из реакционной смеси.
Предлагаемый способ получения трифторметил-3,4-дихлорбензола имеет следующие преимущества:
использование данного способа позволяет получать целевой продукт с выходом до 92%
данный способ предусматривает использование в качестве исходного сырья продуктов, выпускаемых химической промышленностью РФ;
промышленное производство трифторметил-3,4-дихлорбензола на основе данного способа будет более экологичным, так как не использует неорганических фторидов и при нем не образуется больших количеств кислых сточных вод;
выделение трифторметил-3,4-дихлорбензола в данном способе значительно проще, чем в прототипе, так как не включает ни кислотных, ни водных промывок реакционной массы;
технологическое оформление процесса предполагает использование стандартной аппаратуры.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ТРЕТ-БУТИЛАЦЕТИЛЕНА | 2002 |
|
RU2238260C2 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРАНГИДРИДОВ КАРБОНОВЫХ КИСЛОТ | 1993 |
|
RU2078759C1 |
СПОСОБ ПОЛУЧЕНИЯ д-ДИХЛОРБЕНЗОЛА | 1973 |
|
SU391122A1 |
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОР(2,2-ДИМЕТИЛ-1,3-ДИОКСОЛА) | 2016 |
|
RU2633352C1 |
Способ получения оксалилхлорида | 1990 |
|
SU1810328A1 |
Способ получения тиолов | 1980 |
|
SU930878A1 |
Способ получения дихлорбензолов | 1977 |
|
SU609750A1 |
СПОСОБ УНИЧТОЖЕНИЯ ЛЮИЗИТА | 1994 |
|
RU2086280C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛКИЛХЛОРМОНОСИЛАНОВ | 1996 |
|
RU2103273C1 |
СПОСОБ ПОЛУЧЕНИЯ 6,7-ДИГАЛОГЕН-3,3-БИС(ТРИФТОРМЕТИЛ)-2-АЗАБИЦИКЛО[2.2.1]ГЕПТАНОВ | 1993 |
|
RU2039748C1 |
Изобретение относится к синтезу органических соединений, конкретно к способам получения трифторметил-3,4-дихлорбензола. Предложен новый способ получения трифторметил-3,4-дихлорбензола с выходом до 92%, который заключается в обработке элементарным хлором трифторметил-4-хлорбензола в присутствии каталитических количеств комплекса хлорного железа с пятихлористым фосфором при мольном соотношении реагентов: трифторметил-4-хлорбензол:хлор=1:1,1-1,2 при комнатной температуре. Катализатор - комплекс хлорного железа с пятихлористым фосфором - образуется при хлорировании железных стружек и треххлористого фосфора непосредственно в реакторе в трифторметил-4-хлорбензоле. Преимуществом данного способа являются высокие - до 92% выходы целевого продукта, экологичность, простота проведения процесса, а также использование в качестве исходного сырья продуктов крупнотоннажного отечественного производства. 2 табл.
Способ получения трифторметил-3,4-дихлорбензола, отличающийся тем, что трифторметил-4-хлорбензол обрабатывают элементарным хлором в присутствии каталитического количества комплекса хлористого железа с пятихлористым фосфором при мольном соотношении трифторметил-4-хлорбензол хлор, равном 1 1,1 1,2, при комнатной температуре.
Ягупольский Л.М | |||
и др | |||
ЖОХ, N 29, 1958, с | |||
Корпус судна | 1924 |
|
SU2734A1 |
Авторы
Даты
1997-07-10—Публикация
1994-09-22—Подача