ЭЛЕКТРИЧЕСКИЙ ПРИВОД ПЕРЕМЕННОГО ТОКА Российский патент 1997 года по МПК H02P7/36 H02P7/62 

Описание патента на изобретение RU2085017C1

Изобретение относится к электротехнике, конкретно к управляемому электроприводу, и может быть использовано, в частности, для привода тягового состава, металлорежущих станков и механизмов с широким диапазоном изменения частоты вращения.

Известны схемы, где управление частотой вращения трехфазного асинхронного двигателя с фазным ротором осуществляется путем регулирования тока в роторных обмотках. Существуют каскадные и одномашинные электроприводы. Среди последних можно выделить две группы.

В первой из них /1/ обмотки ротора замыкаются на звезду резисторов, шунтированных симисторами. Регулирование тока производится изменением фазы отпирающих симисторы импульсов. Недостатком указанной группы являются потери в резисторах роторных цепей, соизмеримые с мощностью двигателя, и ограниченный снизу диапазон регулирования частоты вращения. Использование электроприводов этой группы возможно лишь при наличии трехфазной сети, что исключает их применение в электрической тяге и бытовой аппаратуре.

Во второй группе токи роторных обмоток, имеющие частоту скольжения, выпрямляются и инвертируются в сеть /2/. Известны и модификации электропривода, где используются инверторы с непосредственной связью. Регулирование частоты вращения двигателя осуществляется воздействием на фазу управляющих импульсов инвертора. Достоинством второй группы электроприводов по сравнению с первой является отсутствие роторных резисторов, а недостатком - наличие трансформаторов и дросселей в силовых цепях.

Наиболее близким техническим решением, выбранным в качестве прототипа, является устройство для регулирования скорости трехфазного асинхронного двигателя с фазным ротором /1/, в котором регулирование осуществляется с помощью симисторов, шунтирующих резисторы цепей ротора.

Наиболее существенным общим признаком изобретения и прототипа является включение симисторов в роторные цепи.

Технический результат, достигаемый изобретением, состоит в устранении резисторов из цепей ротора и связанных с ними потерь, возможности питания как от однофазной, так и от трехфазной сети, отсутствии трансформаторов и реактивных элементов в силовых цепях и в обеспечении работы при малых частотах вращения.

Поставленная задача достигается тем, что роторные обмотки двигателя замыкаются на звезду симисторов, работающих в режиме прерывистых токов, одна из статорных обмоток питается от выпрямителя постоянным током, а две другие статорные обмотки соединяются встречно последовательно и питаются от управляемого выпрямителя, связанного с однофазной или трехфазной сетью, либо непосредственно от однофазной сети.

К достоинствам заявляемого электропривода можно также отнести возможность его бесконтактного исполнения, в котором симисторы закрепляются на валу, а управляющие импульсы передаются на ротор магнитным или оптическим способом.

При рассмотрении принципа действия электропривода воспользуется схемой фиг. 2, где обмотки статора 1 и 3 фиг. 1, вектор намагничивающей силы которых сдвинут в пространстве на 90 электрических градусов по отношению к обмотке 2, замещены обмоткой 10 с тем же пространственным сдвигом, а управляемый выпрямитель 9 питается от однофазной сети.

На управляющие электроды симисторов 5-7 и тиристоров моста 9 одновременно поступают открывающие импульсы, сдвинутые на угол γ относительно моментов прохождения сети через нуль. Регулирование частоты вращения двигателя достигается изменением g в диапазоне, где токи ia, ib и ie имеют прерывистый характер. Интервал между импульсами в стационарном режиме при питании моста 9 от однофазной сети равен полупериоду, а при питании от трехфазной сети трети периода. Интервал между импульсами при питании обмоток 1-3 непосредственно от однофазной сети равен периоду. Положение ротора определяется углом q в электрических градусах между магнитными осями обмотки 10 и фазы "а" роторной обмотки.

Как вариант исполнения в составе заявляемого привода возможно применение двигателя, у которого встречно-последовательное соединение фаз 1 и 3 заменено одной обмоткой 10, магнитная ось которой сдвинута на 90 электрических градусов относительно оси обмотки 2, как это показано на фиг. 2. Управляемый выпрямитель 9 здесь выполнен по однофазной симметричной мостовой схеме, что соответствует подключению к однофазной сети /К=1/.

Работу привода рассмотрим для схемы, представленной на фиг. 2. В качестве симметричных ключей 5-7 взяты симисторы. Пуск и управление частотой вращения осуществляется путем синхронного изменения угла g отпирания тиристоров одного плеча выпрямителя 9 и симисторов 5-7 в диапазоне, в котором токи i1, i2, ib, ic обмоток 10 и 4 имеют прерывистый характер. Обмотка 2 питается постоянным током I2. Положение ротора определяется углом q в электрических градусах между магнитными осями обмотки 10 и фазы "а" обмотки 4.

Примем следующие допущения:
магнитная система машины линейна;
распределение индукции в воздушном зазоре, возбуждаемой током отдельной обмотки, имеет косинусоидальный характер.

Введем обозначения:
LL, LS1 индуктивность и индуктивность рассеивания обмотки 10;
L, LS индуктивность и индуктивность рассеивания фазы обмотки 4;
Mk1, Mk2 / k= a, b, c/, взаимоиндуктивности между фазами обмотки 4 и соответственно обмотками 10 и 2;
Mab, Mac, Mbc взаимоиндуктивности между фазами обмотки 4.

Для взаимоиндуктивностей справедливы соотношения:

Потокосцепления обмотки 10 и фазы "а" обмотки 4:


В выражении для ψa учтено, что ia+ib+ic=0
Произведем замену переменных
ia= idcosθ+iqsinθ (4)
Дифференциальные уравнения цепей обмотки 10 и фазы "а" обмотки 4:
1+i1r1=Umsinωt (5)
a+iar=0 (6)
где r1 и r сопротивления обмотки 10 и фазы обмотки 4;
Um, ω амплитуда и частота напряжения сети;
P оператор дифференцирования.

Уравнения для фаз "b" и c" обмотки 4 получаются при замене в /3/, /4/, /6/ ia на ib или ic и θ на
После исключения из /3/-/6/ промежуточных переменных получаем систему дифференциальных уравнений для токов i1, id и iq:



которая решается при начальных условиях:
ωt = γ , i1=id=iq= 0 (10)
что соответствует закрытому состоянию вентилей в момент γ подачи отпирающего импульса.

Рассмотрим режим заторможенного ротора, когда q const. Из /9/ и /10/ следует, что в этом режиме iq=0.

После исключения из /7/ и /8/ i1 получаем дифференциальное уравнение для id:

Опустив малые параметры после деления /11/ на p получаем приближенное уравнение 1-ого порядка для тока id:

К аналогичному упрощению прибегают при расчете момента обычной асинхронной машины, когда пренебрегают намагничивающим током статорной обмотки.

Введем обозначения:

Тогда /12/ принимает вид:
(1+Tp)id=Idmsin ωt (14)
Аналогичным путем /7/ и /8/ преобразуются в приближенное уравнение для тока i1:
(1+Tp)i1=I1msin ωt (15)
где

а постоянная времени T выражается формулой /13/.

Из /14/ и /15/ следует, что в рассматриваемом режиме токи i1 и id пропорциональны:

Решение /14/ при начальных условиях /10/ имеет вид:

В момент ωt=Φ токи id и i1 достигают нулевого значения и вентили в цепях обмоток 10 и 4 запираются. Согласно /18/

Условие прерывистости тока i1:
Φ-γ≅ π (20)
Из /19/ следует, что при γmin=arctg ωT угол Φ = γmin+π Допустимый диапазон управления лежит в пределах γmin≅ γ< π
Мгновенные значения момента на валу ротора:

где геометрический угол поворота ротора,
Pn число пар полюсов.

Согласно /1/, /4/ и /21/:

Среднее за полупериод значение момента составляет:

Согласно /18, /22/ и /23/:

где:

При выводе /24/ было учтено уравнение /19/ границы режима.

Из уравнений /24/ им /19/ следует, что не зависит от положения ротора и целиком определяется углом-управления γ При угол Φ=γmin+π и Если же

При вращении ротора с угловой скоростью Ω на обмотках машины наводится э.д.с. вращения и уравнения токов /7/-/9/ принимают вид:

Анализ показывает, что при вращении ротора ток i1 и токи фазных обмоток достигают нулевого значения не одновременно. Будут существовать интервалы, в одном из которых один из фазных токов равен нулю, а в другом существует лишь ток i1. Указанные эффекты приводят к уменьшению момента с ростом частоты вращения Ω
Полученные выражения могут быть применены и при расчете схемы с асинхронным двигателем /фиг. 1/. При этом следует использовать следующие соотношения:
L1=3Lc, Ls1=2Lsc, L=Lp, Ls=Lsp,

Здесь индуктивность Lc и индуктивность рассеивания Lsc фазы статорной обмотки, индуктивность Lp и индуктивность рассеивания Lsp фазы роторной обмотки, амплитуда взаимоиндукции между фазами статора и ротора Mcp, сопротивления rc и rp фазы обмоток соответственно статора и ротора есть параметры асинхронного двигателя.

На фиг. 3 приведено семейство расчетных электромеханических характеристик для асинхронного двигателя типа MTF III-6. Характеристики построения в относительных единицах: и при и 1=11,7A
В качестве базисных величин приняты:
mб= 2Mocosγmin;
При питании от трехфазной сети (K=3) управляемый выпрямитель 9 выполняется по трехфазной мостовой симметричной схеме.

Похожие патенты RU2085017C1

название год авторы номер документа
ЭЛЕКТРИЧЕСКИЙ ПРИВОД ПЕРЕМЕННОГО ТОКА 1992
  • Львов Евгений Львович
  • Фомченков Владимир Петрович
RU2025037C1
ЭЛЕКТРОПРИВОД МЕХАНИЗМА ПОВОРОТА ГРУЗОПОДЪЕМНОГО КРАНА 2005
  • Певзнер Ефим Маркович
  • Голев Сергей Петрович
  • Соколов Игорь Александрович
  • Попов Евгений Владимирович
RU2298519C2
Электропривод переменного тока 1990
  • Волков Игорь Владимирович
  • Стяжкин Виталий Павлович
  • Аркушин Василий Прокофьевич
  • Исаков Владимир Николаевич
SU1725360A1
Реверсивный асинхронный электропривод 1988
  • Дмитриев Владимир Николаевич
  • Иванов Владимир Михайлович
  • Кислицин Анатолий Леонидович
  • Марага Сергей Михайлович
SU1539951A1
Устройство для управления асинхронным электродвигателем с фазным ротором 1984
  • Грязнов Владимир Иванович
  • Степанов Константин Сергеевич
  • Южбабенко Владимир Дмитриевич
SU1279036A1
СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМ ДВИГАТЕЛЕМ С ФАЗНЫМ РОТОРОМ 1999
  • Борисов А.М.
  • Васькин А.А.
  • Долгодворова О.Ю.
  • Драчев Г.И.
  • Ильинов В.И.
  • Калинин А.С.
  • Лохов С.П.
  • Лях Н.Е.
RU2202850C2
СХЕМА ПОДКЛЮЧЕНИЯ МНОГОФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ К ИСТОЧНИКУ ПОСТОЯННОГО ТОКА 2009
  • Попов Андрей Викторович
RU2406217C1
Многодвигательный электропривод переменного тока 1985
  • Сагитов Пулат Исмаилович
  • Туганбаев Ибрагим Туганбаевич
  • Масалов Владимир Васильевич
  • Тергемесов Кажибек Тлеугалиевич
SU1265959A1
Способ управления асинхронным двигателем с фазным ротором 1989
  • Акинин Константин Павлович
  • Войтех Владимир Александрович
  • Волков Игорь Владимирович
  • Исаков Владимир Николаевич
  • Плугатарь Алексей Петрович
SU1723652A1
УСТРОЙСТВО ПЛАВНОГО ПУСКА АСИНХРОННОГО ДВИГАТЕЛЯ 2013
  • Посконный Геннадий Ильич
  • Горбунов Роман Леонидович
RU2530532C1

Иллюстрации к изобретению RU 2 085 017 C1

Реферат патента 1997 года ЭЛЕКТРИЧЕСКИЙ ПРИВОД ПЕРЕМЕННОГО ТОКА

Использование: для привода тягового состава, металлорежущих станков и механизмов с широким диапазоном изменения частоты вращения. Сущность: в электроприводе переменного тока у асинхронного двигателя переменного тока с фазным ротором роторные обмотки замкнуты на звезду симисторов, одна статорная обмотка соединена с источником постоянного тока, а две другие, соединенные последовательно, через управляемый выпрямитель соединены с однофазной или трехфазной сетью переменного тока. При этом угол управления симисторами и вентилями управляемого выпрямителя выбирают из условия прерывистого тока в обмотке статора. 3 ил.

Формула изобретения RU 2 085 017 C1

Электрический привод переменного тока, содержащий асинхронный двигатель с фазным ротором, роторные обмотки которого замкнуты на звезду симисторов, отличающийся тем, что одна из статорных обмоток соединена с источником постоянного тока, а две другие статорные обмотки соединены последовательно и через управляемый выпрямитель подключены к однофазной или трехфазной сети, а угол открытия симисторов и вентилей управляемого выпрямителя выбран в диапазоне, где ток двух последовательно соединенных статорных обмоток имеет прерывистый характер.

Документы, цитированные в отчете о поиске Патент 1997 года RU2085017C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Устройство для регулирования скорости трехфазного асинхронного двигателя с фазным ротором 1977
  • Алехин Сергей Ильич
  • Геродес Георгий Анатольевич
  • Копернак Василий Михайлович
  • Эллис Станислав Владиславович
SU758453A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Чиженко И.М
и др
Основы преобразовательной техники
- М.: Высшая школа, 1974, рис
Паровоз для отопления неспекающейся каменноугольной мелочью 1916
  • Драго С.И.
SU14A1

RU 2 085 017 C1

Авторы

Львов Евгений Львович

Фомченков Владимир Петрович

Даты

1997-07-20Публикация

1993-03-23Подача