Изобретение относится к автотракторостроению, а именно к системам автоматического управления торможением транспортных машин.
Известен способ автоматического управления торможением, заключающийся в корректировке темпа изменения давления в тормозном приводе пропорционально разности текущего и эталонного значений углового ускорения колеса с прекращением корректировки при изменении знака углового ускорения с отрицательного на положительное и возобновлением корректировки давления при обратном изменении знака углового ускорения [1]
Недостаток известного способа заключается в том, что эталонное значение углового ускорения колеса постоянно, хотя в действительности оно зависит от величины и характера изменения коэффициента сцепления или пропорционального ему значения момента силы торможением MΦ характера изменения тормозного момента Мт действующего на колесо от тормозного механизма, скорости движения транспортной машины и других факторов. При слабо выраженном максимуме функции MΦ(S) или отсутствии максимума, а также при резком изменении коэффициента сцепления в процессе торможения система управления обладает недостаточно выраженными адаптивными свойствами, что отрицательно сказывается на эффективности торможения.
Известно использование при формировании эталонного (порогового) значения ускорения затормаживаемого колеса датчика коэффициента сцепления [2] Однако способ определения коэффициента сцепления основан на применении датчика коэффициента сцепления, выполненного в виде токопроводящих пластин, устанавливаемых на автомобиле перед передними колесами, что не дает информации о текущем значении момента тормозной силы каждого затормаживаемого колеса, а при практической реализации может вызвать серьезные возражения.
В качестве прототипа принят способ автоматического управления по источнику [1]
Цель изобретения заключается в повышении эффективности торможения транспортной машины за счет формирования структуры системы автоматического управления на основе адаптивных методов оценивания вектора состояния системы затормаживаемое колесо дорога.
Указанная цель достигается тем, что в процессе торможения непрерывно оценивают моменты сил торможения каждого затормаживаемого колеса, определяют оценку суммарной тормозной силы, действующей на транспортную машину, и оценку скорости движения транспортной машины, при заданном постоянном уровне проскальзывания для каждого затормаживаемого колеса определяют оценку заданной скорости колеса, сравнивают заданную скорость колеса с фактической скоростью колеса и определяют сигнал ошибки регулирования скорости для каждого затормаживаемого колеса, с использованием оценок момента сил торможения и ошибок регулирования скорости определяют заданное давление в тормозном приводе каждого затормаживаемого колеса, сравнивают заданное давление с фактическим давлением в тормозном приводе каждого затормаживаемого колеса и по сигналу ошибки формируют управляющие сигналы, которые подают на модуляторы давления каждого затормаживаемого колеса. Поставленная цель достигается также за счет того, что в процессе торможения при проскальзываниях колеса меньше заданного значения оценивают наличие максимума момента силы торможения для каждого затормаживаемого колеса и при наличии максимума принимают составляющую заданного давления, зависящую от ошибки регулирования скорости колеса, со знаком минус при замедлении колеса и со знаком плюс при ускорении колеса.
На фиг. 1 показана зависимость моментов, действующих на затормаживаемое колесо в зависимости от проскальзывания колеса; на фиг. 2 изменение оценки момента силы торможения, действующего на колесо, в зависимости от времени при наличии максимума функции MΦ(S) на фиг. 3 функциональная схема устройства, реализующего предлагаемый способ управления торможением.
При управлении торможением по предлагаемому способу в процессе торможения непрерывно оценивают момент тормозной силы, используя следующую процедуру оценивания:
где
Vk окружная скорость колеса, измеряемая с помощью датчика;
оценка окружной скорости колеса;
интегральная составляющая оценки момента силы торможения, действующего на затормаживаемое колесо;
P давление в тормозном приводе, измеряемое с помощью датчика;
a параметр объекта регулирования (затормаживаемого колеса);
K1 и K2 параметры оценивателя вектора состояния затормаживаемого колеса;
Kт коэффициент передачи тормозного механизма.
Момент силы торможения, получаемый в результате оценивания (наблюдения), определяется следующим образом
По полученной оценке определяют первую составляющую сигнала заданного давления в тормозном приводе колеса
Тормозной момент Mт при этом давлении равен оценке момента силы торможения
Вторую составляющую заданного давления формируют следующим образом. В процессе торможения изменение моментов Mт носит случайный характер. При слабо выраженном максимуме или отсутствии максимума функции MΦ(S) при известном способе торможения система управления может допустить блокировку затормаживаемого колеса. Поэтому на случай отсутствия максимума функции MΦ(S) для исключения возможности блокировки затормаживаемого колеса ограничивают проскальзывание колеса некоторым заданным значением Sз (см фиг. 1).
При заданном значении проскальзывания определяют оценку заданной скорости колеса.
где
оценка скорости движения транспортной машины.
Оценку скорости транспортной машины определяют следующим образом
где
V0 скорость транспортной машины, зафиксированная в начале воздействия на тормозную педаль;
ma масса транспортной машины;
rд динамический радиус колеса;
оценка суммарного момента сил торможения всех затормаживаемых колес.
Заданную скорость сравнивают с фактической скоростью затормаживаемого колеса Vk, получаемой с датчика скорости колеса. По сигналу ошибки регулирования скорости формируют вторую составляющую заданного давления одним из способов:
где
Kp коэффициент пропорциональности.
Суммарное заданное давление в приводе затормаживаемого колеса определяют как
Pз=Pз1+Pз2.
Заданное давление Pз сравнивают с давлением P в тормозном приводе колеса, измеренным с помощью датчика.
По сигналу ошибки формируют управляющий сигнал U=Ku•(Pз-P) для каждого затормаживаемого колеса, который подают на элемент управления модулятором давления каждого затормаживаемого колеса.
В процессе торможения анализируют также знаки оценок
Если при проскальзывании колеса S<Sз функция имеет максимум, то заданное давление в тормозном приводе колеса формируют следующим образом:
Pз=Pз1+Pз2 • SignZ,
где SignZ=1, если <0 и <0
и SignH=1, если <0 и > 0.
Функционирование системы автоматического управления торможением при этом поясняется графиками, приведенными на фиг. 1 и 2.
Допустим, что функция MΦ(S) имеет максимум при проскальзывании колеса Sk < Sз. При торможении колеса оценка производной <0, а при S<Sk оценка производной > 0 (см. фиг. 2).
При прохождении через максимум слева направо на плоскости MΦ(S) (при t= t1 на фиг. 2) знак оценки производной изменится с плюса на минус. При сочетании <0 и <0 в момент времени t=tn1 с учетом запаздываний и инерционности системы колесо -устрйоство управления происходит изменение знака составляющей заданного давления Pз2 с плюса на минус. Управляющий сигнал U=Ku • (Pз-P) скачком изменяется в сторону уменьшения и изменяет свой знак. Момент тормозного механизма уменьшается и становится меньше момента тормозной силы MΦ Колесо начинает разгоняться. При этом > 0 и > 0. При прохождении через максимум справа налево на плоскости MΦ(S) (при t=t2 на фиг. 2) знак оценки производной изменяется с плюса на минус. При сочетании <0 и > 0 в момент времени t=tn2 происходит изменение знака составляющей заданного давления Pз2 с минуса на плюс. Тормозной момент Mt увеличивается и начинается затормаживание колеса. Таким образом осуществляется регулирование скорости колеса с обеспечением проскальзывания, близкого к оптимальному (критическому) значению Sk.
При изменении в процессе торможения коэффициента сцепления оцениватель вектора состояния затормаживаемого колеса отслеживает эти изменения. При изменении оценки изменяется первая составляющая заданного давления что приводит к изменению тормозного момента Mt. Таким образом при использовании предлагаемого способа система автоматического управления торможением адаптивна к изменениям сцепления колеса и к характеру изменения момента сил сцепления MΦ в зависимости от проскальзывания колеса.
На фиг. 3 показана функциональная схема устройства автоматического управления торможением транспортной машины, реализующего предлагаемый способ автоматического управления.
Устройство содержит тормозной кран 1, связанный с педалью торможения 2, датчик исходного положения педали торможения 3, модулятор давления 4, тормозной механизм 5, затормаживаемое колесо 6, датчик скорости колеса 7, устройство выборки-хранения 8, датчик давления 9, блок оценки вектора состояния затормаживаемого колеса 10, управляющее устройство 11.
Блок оценки вектора состояния затормаживаемого колеса 10 содержит блок формирования сигнала оценки скорости колеса 12 и блок формирования сигнала оценки момента силы торможения 13. Управляющее устройство 11 содержит блок формирования сигнала ошибки регулирования скорости колеса 14, блок 15 формирования сигнала заданного давления в тормозном приводе колеса, блок формирования управляющего сигнала 16 и детектор максимума 17.
Блок формирования сигнала оценки скорости колеса 1 содержит усилительный элемент 18, элемент сравнения 19, усилительный элемент 20, интегратор 21. Блок формирования сигнала оценки момента силы торможения 13 содержит элемент сравнения 22, усилительный элемент 23, усилительный элемент 4, интегратор 25 и суммирующий элемент 26. Блок формирования сигнала ошибки регулирования скорости колеса 14 содержит суммирующий элемент 27, усилительный элемент 28, интегратор 29, усилительный элемент 30 и элемент сравнения 31. Блок формирования сигнала заданного давления в тормозном приводе 15 содержит усилительный элемент 32, интегратор 33, коммутационное устройство 34, инвертор 35 и суммирующий элемент 36.
Блок формирования управляющего сигнала 16 содержит суммирующий элемент 37 и усилительный элемент 38. Управляющий блок 11 содержит также вычислитель 39 скорости транспортной машины в начале торможения, связанный входом с выходом устройства выборки-хранения 8, а выходом с входом начального условия интегратора 29.
Устройство выборки-хранения 8 связано выходом также с входом начального условия интегратора 21 блока 12 блока оценки вектора состояния 10.
Устройство автоматического управления торможением транспортной машины работает следующим образом.
При воздействии на педаль торможения 2 давление с выхода тормозного крана 1 через модуляторы 4 подается в тормозные механизмы 5 каждого затормаживаемого колеса. Тормозные механизмы создают тормозные моменты Mтi, под действием которых каждое затормаживаемое колесо уменьшает свою скорость. Давление в тормозном приводе каждого затормаживаемого колеса измеряемся с помощью датчика 9, скорость каждого затормаживаемого колеса измеряется с помощью датчика 7.
В начале воздействия на педаль по сигналу с датчика 3 исходного положения педали устройство выборки-хранения 8 фиксирует сигнал, пропорциональный скорости колеса 12 в начале торможения. Этот сигнал вводится в интегратор 21 блока формирования сигнала оценки скорости колеса блока оценки вектора состояния 10 как начальное условие. По средней скорости колес в начале торможения вычислитель 39 определяет скорость транспортной машины в начале торможения, значение которой вводится как начальное условие в интегратор 29 блока 14 формирования сигнала ошибки регулирования скорости колеса. Сигналы на выходе усилителей 18 блока 12 пропорциональны тормозному моменту каждого затормаживаемого колеса.
Блок оценки вектора состояния 10 каждого затормаживаемого колеса, получая на входе информацию о действующем тормозном моменте Mтi и скорости затормаживаемого колеса Vki, в соответствии с описанной в способе управления процедурой оценивания, непрерывно выдает на выходе суммирующего элемента 26 блока оценки вектора состояния 10 сигнал, пропорциональный действующему на затормаживаемое колесо моменту силы торможения
Требуемое качество оценивания (время оценивания и ошибка оценивания) обеспечивается подбором параметров оценивателя K1 и K2, реализуемых в усилительных элементах 23 и 24.
Сигнал с выхода суммирующего устройства 26 блока оценки вектора состояния 10 через усилитель 32 подается на первый вход суммирующего элемента 36 блока 15 формирования сигнала заданного давления управляющего устройства 11.
Этот сигнал пропорционален первой составляющей заданного давления Pз1i в тормозном приводе каждого затормаживаемого колеса.
Сигнал с выхода сумматора 26 блока оценки вектора состояния 10 каждого затормаживаемого колеса поступает также на вход сумматора 27 блока 14 формирования сигнала ошибки регулирования скорости колеса управляющего устройства 11. Суммарный сигнал, пропорциональный сумме моментов сил торможения всех затормаживаемых колес, через усилитель 28 подается на вход интегратора 29. На выходе интегратора 29 получается сигнал, пропорциональный оценке скорости транспортной машины Этот сигнал, проходя через усилитель 30, преобразуется в сигнал заданной скорости колеса при заданном проскальзывании Sз. На элементе сравнения 31 сигнал заданной скорости сравнивается с сигналом с датчика скорости 7 каждого затормаживаемого колеса. Сигнал, пропорциональный ошибке регулирования скорости колеса, интегрируется на интеграторе 33 блока 15 формирования сигнала заданного давления, на выходе которого получается сигнал, пропорциональный второй составляющей заданного давления Pз2i в тормозном приводе каждого затормаживаемого колеса. Этот сигнал через нормально замкнутый контакт коммутационного устройства 34 подается на второй вход суммирующего устройства 36. На третий вход суммирующего устройства 36 сигнал Pз2i подается через инвертор 35, изменяющий знак сигнала с плюса на минус при переключении контакта в коммутационном устройстве 34. Переключение контакта в коммутационном устройстве 34 осуществляется по сигналу, поступающему с детектора максимума 17. В детекторе максимума на заданном временном шаге оценивается знак разности Одновременно определяется знак оценки производной от скорости колеса, получаемый с выхода усилительного элемента 20 блока 12 формирования сигнала оценки скорости колеса блока оценки вектора состояния 10. При контакт в коммутационном устройстве каждого затормаживаемого колеса переключается в нормально открытое состояние, при этом сигнал Pз2i на вход суммирующего устройства 36 подается со знаком минус.
При контакт в коммутационном устройстве каждого затормаживаемого колеса возвращается в нормально замкнутое состояние, при этом сигнал Pз2i на вход суммирующего устройства 36 подается со знаком плюс. Суммарный сигнал с выхода суммирующего устройства 36, пропорциональный заданному давлению в тормозном приводе Pзi каждого затормаживаемого колеса, сравнивается на элементе сравнения 37 блока 16 формирования управляющего сигнала с сигналом, поступающим с датчика давления 9 каждого затормаживаемого колеса. Усиленный усилителем 38 сигнал ошибки управления, равный управляющему сигналу Ui для каждого затормаживаемого колесаподается на модулятор давления каждого затормаживаемого колеса. Давление в приводе каждого затормаживаемого колеса изменяется пропорционально управляющему сигналу Ui.
Скорости затормаживаемых колес изменяются так, что их относительные проскальзывания находятся вблизи заданного проскальзывания или вблизи оптимального (критического) проскальзывания Ski, соответствующего максимуму функции MΦi(Si)
При изменении коэффициента сцепления любого из затормаживаемых колес соответствующий блок оценки вектора состояния 10 отслеживает это изменение. При этом изменяется заданное давление в тормозном приводе соответствующего колеса, за счет чего обеспечивается адаптивные свойства системе автоматического торможения и высокая эффективность торможения.
Расчетные исследования показывают, что при любых коэффициентах сцепления и при скачкообразных изменениях коэффициента сцепления в процессе торможения показатель эффективности торможения, представляющий собой отношение среднереализуемого за время торможения коэффициента сцепления к максимально возможному для заданных условий торможения коэффициенту сцепления, большую часть времени торможения (75-80% полного времени торможения) достигает величины 0,97-0,98, что свидетельствует о эффективности предлагаемого способа автоматического торможения. Достоинство предлагаемого способа заключается также в том, что в отличие от известного способа управления, при технической реализации не требуется применять дифференцирующие устройства для определения ускорения замедления затормаживаемого колеса, что делает устройство автоматического торможения помехозащищенным и повышает его надежность.
Использование: применяется в автотракторостроении, а именно в системах автоматического управления торможением транспортных машин. Сущность изобретения в процессе торможения непрерывного оценивают моменты сил торможения каждого тормозного колеса. Определяют оценку суммарной тормозной силы и оценку скорости движения транспортной машины. При заданном постоянном проскальзывании для каждого колеса определяют оценку заданной скорости колеса. Сравнивают заданную скорость с фактической и определяют ошибку регулирования скорости каждого тормозного колеса. С использованием оценок момента сил торможения и ошибок регулирования скорости определяют заданное давление в тормозном приводе каждого тормозного колеса, сравнивает заданное давление с фактическим давлением и по сигналу ошибки формируют управляющие сигналы, которые подают на модуляторы давления каждого тормозного колеса. Устройство содержит наблюдатель 10, для каждого колеса, связанный входами с датчиком 9 давления в тормозном приводе и с датчиком 7 скорости колеса, а выходом - с управляющим устройством, формирующим управляющий сигнал на модулятор давления тормозного привода. 2 с.и 7 з.п. ф-лы, 3 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ автоматического управления торможением | 1981 |
|
SU1013323A1 |
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Управляющее устройство для противоблокировочной тормозной системы автомобиля | 1981 |
|
SU1054146A1 |
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
Авторы
Даты
1997-08-10—Публикация
1994-06-17—Подача