Изобретение относится к полупроводниковой технике и может найти применение для определения концентрации озона в приповерхностном слое Земли, в верхних слоях атмосферы, в медицинской технике, при очистке питьевой воды, в промышленной технологии, а также в сельском хозяйстве.
Известен способ определения озона с помощью полупроводниковых оксидов металлов, нанесенных на диэлектрическую подложку [1]
Однако этот способ не позволяет достичь высокой чувствительности и селективности к озону. Рабочие температуры таких сенсоров составляют 370oC и выше.
Наиболее близким является способ [2] согласно которому на подложку из оксида алюминия, снабженную Pt контактами и Pt нагревателем наносят последовательно слои оксида индия, оксида железа (3-6 мол.) и оксида кремния и формируют пленку при 500oC в течение 2 ч.
Наилучшая чувствительность к озону достигается при 370oC. Изменение концентрации озона на три порядка по данным работы [2] приводит к изменению сопротивления пленки на порядок.
Недостатками способа являются высокая рабочая температура сенсора, низкая разрешающая способность к озону и недостаточная селективность к другим окислительным газам.
Изобретение позволяет снизить рабочую температуру сенсора до 170-200oC, резко повысить чувствительность к озону (в 30-50 раз) и поднять селективность в отношении хлора в 100 раз.
Сущность изобретения состоит в том, что на подложку из поликора, снабженную Pt нагревателем и Pt контактами, наносят методом толстопленочной технологии смесь оксида индия с 3-6 мол. оксида железа в виде γ - модификации и формируют пленку в течении 1 ч при 300-350oC, так как при температуре выше 400oC g модификация оксида железа переходит в a - форму. Наибольшая чувствительность к озону проявляется при 170-200oC.
Согласно изобретению, при помещении сенсора в измеряемую среду без содержания в ней озона, хлора и окислов азота на измерительном приборе устанавливается начальное значение сопротивления пленки. При введении озона, хлора, окислов азота в смеси с воздухом происходит изменение сопротивления пленки пропорционально их концентрации.
Изобретение иллюстрируется примерами, представленными в табл. 1-3.
Таким образом способ позволяет снизить рабочую температуру сенсора до 170-200oC, повысить его чувствительность к озону (30-50 раз) и тем самым повысить разрешающую способность сенсорного устройства, а также его селективность в присутствии других окислительных газов, таких как хлор и окислы азота.
название | год | авторы | номер документа |
---|---|---|---|
АНАЛИЗАТОР СЕЛЕКТИВНОГО ОПРЕДЕЛЕНИЯ ВОДОРОДА В ГАЗАХ | 1997 |
|
RU2124718C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОЛИМЕРНЫХ МЕМБРАН | 1994 |
|
RU2104761C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ | 1998 |
|
RU2146174C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИИМИДНОГО АНТИАДГЕЗИОННОГО ПОКРЫТИЯ | 1992 |
|
RU2021296C1 |
СПОСОБ ДИАГНОСТИКИ ПАТОЛОГИИ ОРГАНИЗМА | 1997 |
|
RU2133033C1 |
СПОСОБ АНАЛИЗА ТВЕРДЫХ ТЕЛ | 1997 |
|
RU2124716C1 |
Способы изготовления полупроводниковых резистивных сенсоров для измерений содержания озона в воздухе | 2016 |
|
RU2665348C2 |
ТЕРМОСТОЙКИЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1996 |
|
RU2123374C1 |
РАСТВОРИМЫЕ ФОТОПРОВОДЯЩИЕ ПОЛИИМИДЫ | 1996 |
|
RU2124530C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕДЛЕННОДЕЙСТВУЮЩИХ УДОБРЕНИЙ | 1990 |
|
RU2023710C1 |
Использование: аналитическое приборостроение, медицина, очистка питьевой воды, промышленная технология, для определения концентрации озона в приповерхностном слое Земли и в верхних слоях атмосферы. Сущность изобретения: чувствительный слой работает при 170-200oC и содержит оксид индия и оксид железа в виде γ - модификации (структура шпинели) в количестве 3-6 мол.%. 3 табл.
Способ определения озона в воздухе в присутствии хлора и окислов азота, включающий измерение электропроводности пленки оксида индия с добавкой 3 6 мол. оксида железа, нанесенной на диэлектрическую подложку, отличающийся тем, что измерения ведут при 170 220oС, а в качестве оксида железа используют γ -модификацию оксида железа со структурой типа шпинели.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Патент США N 4885929, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Takada T., Suzuri K., Nakane M | |||
Highly Sensitive ozone sensor | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Meet | |||
Chem | |||
Seusor | |||
Tokyo, September, 13 - 17, 1992, p | |||
РУЧНОЙ СТАНОК ДЛЯ ФОРМОВКИ ПУСТОТЕЛЫХ КАМНЕЙ РАЗЛИЧНОЙ ФОРМЫ | 1922 |
|
SU470A1 |
Авторы
Даты
1997-08-27—Публикация
1996-03-20—Подача