Изобретение относится к органической химии, в частности к усовершенствованию способа получения 1,4-бутандиола.
Указанное соединение получают в промышленных масштабах для производства термопластаполибутилентерефталата, используемого в качестве конструкционного материала в автомобилестроении, электротехнике и других областях. Крупной областью потребления 1,4-бутандиола, как промежуточного продукта, является производство тетрагидрофурана универсального низкокипящего растворителя и ценного сырья органического синтеза. Значительные количества 1,4-бутандиола используются для получения γ -бутиролактона, N-метил- и N-винилпирролидонов, широко применяемых в фармацевтической, косметической, текстильной, пищевой, лакокрасочной и электронной отраслях промышленности. Кроме того, 1,4-бутандиол является исходным сырьем при получении полиуретанов. К настоящему времени суммарные мощности по производству 1,4-бутандиола в капиталистических странах превышают 300 тыс.т, а основными производителями продукта являются фирмы США, ФРГ и Японии [1, 2]
Известен способ [2] получения 1,4-бутандиола реакцией конденсации ацетилена с формальдегидом в присутствии катализатора ацетиленида меди при температуре 90-100oС и давлении 5-15 атм. Образующийся в результате конденсации 1,4-бутандиол (выход 95% ) гидрируют над Ni-Ренея при 40-120oС и давлении 6-22 атм. Выход 1,4-бутандиола составляет 85-90% В настоящее время по этой технологии 1,4-бутандиол получают на всех заводах, работающих в ФРГ и США. Реакция проходит по схеме:
Недостатки известного способа.
Проведение реакции в присутствии чрезвычайно взрывоопасного ацетиленида меди. Применение ацетилена и водорода при повышенной температуре (до 120oС) и давлении (до 22 атм) требует специальной пожаро- и взрывобезопасной аппаратуры.
Известен способ [3] получения 1,4-бутандиола с использованием в качестве исходного сырья газообразного пропилена. На первой стадии пропилен окисляют до акролеина, который конденсируют с 2-метил-1,3-пропандиолом в присутствии кислотного катализатора в 2-винил-5-метил-1,3-диоксид (выход 87%).
Полученный ацеталь подвергают гидроформилированию над родиевым катализатором при 110oС и давлении синтез-газа (молярное отношение H2 и CO 1) 8 атм с последующим восстановлением образующихся альдегидов (100oС, давление 71 атм) над палладиевым катализатором до 1,4-бутандиола и побочного продукта 2-метил-1,3-пропандиола. Реакция гидроформилирования промежуточного ацеталя является наиболее важной стадией данного способа получения 1,4-бутандиола. Она протекает с конверсией 97% причем селективность образования альдегида линейного строения и его изомера составляют 80 и 12% соответственно. Реакция проходит по общей схеме:
Недостатки известного способа.
Многостадийность процесса, требующая выделения продуктов на каждой стадии. Реакция гидроформилирования осуществляется при повышенной температуре (110oС) и давлении (80 атм) с участием взрывоопасного водорода и токсичной окиси углерода. В результате реакции образуется трудноразделимая смесь изомерных 1,4-бутандиола и 2-метил-1,3-пропандиола.
Предлагается новый способ синтеза 1,4-бутандиола с использованием в качестве исходного сырья доступного реагента в мягких условиях.
Сущность способа заключается во взаимодействии триэтилалюминия (Et3Al) с избытком этилена в присутствии катализатора, состоящего из дициклопентадиенилцирконийдихлорида (Cp2ZrCl2) и диизобутилалюминий гидрида (ДИБАГ), взятых в молярном соотношении 1:(2-4), преимущественно 1:3, в алифатических растворителях (гексан, гептан, циклогексан и др.). Cp2ZrCl2 берут в количестве 2-5 мол. по отношению к Et3Al, преимущественно 3 мол. Избыток этилена создается повышенным давлением в 8-10 атм. Величина избыточного давления и природа растворителя не оказывают существенного влияния на выход целевого продукта. Реакция проходит за 12-16 часов, преимущественно 14 часов. В результате образуется с выходом 80-95% алюминийорганическое соединение (АОС), которое без предварительного выделения окисляют кислородом воздуха при 0oС в течение 0,5 ч, при 25oС в течение 0,5 ч и чистым кислородом при 40oС в течение 3 ч с последующим гидролизом реакционной массы водой. Выделяют 1,4-бутандиол с общим выходом 60-75% в пересчете на Et3Al. Побочными продуктами реакции являются этиловый спирт, который легко отделяется от 1,4-бутандиола, и гидроокись алюминия Al(OH)3. Использование катализатора больше 5 мол. не приводит к существенному увеличению выхода 1,4-бутандиола, применение катализатора меньше 2 мол. снижает выход целевого продукта, что связано, очевидно, с уменьшением каталитически активных центров в реакционной смеси. Реакция проходит по схеме:
Преимущества предлагаемого метода.
1. В отличие от известных способов 1,4-бутандиол получается из доступного и дешевого этилена. В связи с этим следует отметить, что в литературе отсутствуют сведения по синтезу 1,4-бутандиола из этилена.
2. Реакция проходит в мягких условиях при температуре ≈ 25oC (в известных способах температура до 120oС), а также при сравнительно низких давлениях (в известных способах до 70 атм).
3. Целевой продукт получают без предварительного выделения промежуточного АОС, процесс осуществляется в одном реакционном сосуде.
4. В результате реакции селективно образуется 1,4-бутандиол. Побочными продуктами предлагаемого способа являются этиловый спирт, который используется в пищевой промышленности и в качестве универсального растворителя, а также Al(OH)3, которая используется в строительной индустрии.
5. В реакции не используются взрывоопасные катализаторы (например, ацетилениды меди), а также взрывоопасные газообразные исходные реагенты (например, водород или ацетилен).
Предлагаемый способ поясняется примерами.
Пример 1. В металлический реактор объемом 100 мл в атмосфере аргона загружают 0,44 г (0,0015 г-моль) Cp2ZrCl2, 0,64 г (0,0045 г-моль) i-Bu2AlH в 1 мл гексана, перемешивают 3-5 мин, добавляют 5,7 г (0,050 г-моль) Et3Al в 5 мл гексана, поддавливают ≈ 10 атм этилена и перемешивают 14 часов при комнатной температуре (≈ 25oС). Пропускают через реакционную массу воздух при 0oС в течение 0,5 ч, при 25oС в течение 0,5 ч, затем кислород 3 часа при 40oС. Добавляют в реактор воду, отделяют органический слой от воды, сушат безводным CaSO4. Получают 1,4-бутандиол в количестве 3,2 г (71%). Данные элементного анализа.
Найдено, C 53,2; H 11,2.
Вычислено, C 53,33; H 11,11 (C4H10O2)
Другие примеры, подтверждающие данный способ, приведены в таблице.
Все опыты проводились при комнатной температуре (≈ 25oС) в гексане при избыточном давлении этилена ≈ 8-10 атм (природа растворителя практически не влияет на выход 1,4-бутандиола).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ 1,2-ДИАЛКИЛ(ФЕНИЛ)-ЦИКЛОБУТ-1-ЕНОВ | 1995 |
|
RU2106333C1 |
СПОСОБ ПОЛУЧЕНИЯ 1-(ДИАЛКИЛАМИН)-3-АЛКИЛАЛЮМАЦИКЛОПЕНТАНОВ | 1998 |
|
RU2139876C1 |
СПОСОБ ПОЛУЧЕНИЯ 1-АЛКОКСИ-3-АЛКИЛАЛЮМАЦИКЛОПЕНТАНОВ | 1998 |
|
RU2139877C1 |
СПОСОБ ПОЛУЧЕНИЯ 1-ЭТИЛ-ТРАНС-3,4-ДИАЛКИЛБОРАЦИКЛОПЕНТАНОВ | 1997 |
|
RU2129557C1 |
СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ 1-(АЛКОКСИ)-2,3,4,5- ТЕТРААЛКИЛ(АРИЛ)АЛЮМАЦИКЛОПЕНТАДИЕНОВ И 1-(АЛКОКСИ)-2,3- ДИАЛКИЛ(АРИЛ)АЛЮМАЦИКЛОПРОПЕНОВ | 1997 |
|
RU2130024C1 |
СПОСОБ ПОЛУЧЕНИЯ 1-ЭТИЛ-2(2'-ФЕНИЛЭТИЛЕН)-3-ФЕНИЛАЛЮМАЦИКЛОПРОПАНА | 1997 |
|
RU2146679C1 |
СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ 1-(АЛКОКСИ)-2,4-ДИАЛКИЛ(ФЕНИЛ)АЛЮМАЦИКЛОПЕНТАДИЕНОВ И 1-(АЛКОКСИ)-2-АЛКИЛ(ФЕНИЛ)АЛЮМАЦИКЛОПРОПЕНОВ | 1997 |
|
RU2131431C1 |
СПОСОБ ПОЛУЧЕНИЯ 2-АЛКИЛЗАМЕЩЕННЫХ 1,3-ДИЕНОВ | 1995 |
|
RU2103249C1 |
СПОСОБ ПОЛУЧЕНИЯ 1,1,3-ТРИАЛКИЛОЛОВОЦИКЛОПЕНТАНОВ | 1995 |
|
RU2106351C1 |
СПОСОБ ПОЛУЧЕНИЯ 1-(2-(ЦИКЛОГЕКС-3-ЕН-1-ИЛ)ЭТИЛ)-1,1-ДИЭТИЛАЛАНА | 1997 |
|
RU2129559C1 |
Изобретение относится к органической химии, в частности к усовершенствованию способа получения 1,4-бутандиола. 1,4-бутандиол получают реакцией этилена с триэтилалюминием в присутствии катализатора Cp2ZrCl2 и i-Bu2AlH, взятых в соотношении 1:(2-4), при комнатной температуре за 12-16 часов, с последующим окислением и гидролизом реакционной массы. Указанное соединение получают в промышленных масштабах для производства термопласта - полибутилентерефталата, используемого в качестве конструкционного материала в автомобилестроении, электротехнике и других областях. Крупной областью потребления 1,4-бутандиола является производство тетрагидрофурана. Значительное количество 1,4-бутандиола используется для получения γ -бутиролактона, N-метил- и N-винилпирролидонов, широко применяемых в фармацевтической, косметической, текстильной, пищевой, лакокрасочной и электронной областях промышленности. Кроме того, 1,4-бутандиол является исходным сырьем для получения полиуретанов. 1 табл.
Способ получения 1,4-бутандиола путем превращения непредельного углеводорода в присутствии катализатора, отличающийся тем, что триэтилалюминий подвергают взаимодействию с избытком этилена при давлении 8 10 атм и нормальной температуре в среде алифатического растворителя в течение 14 16 ч в присутствии катализатора, содержащего дициклопентадиенилцирконийдихлорид и диизобутилалюминийгидрид при молярном соотношении 1 (2 4) с дальнейшим последовательным окислением кислородом воздуха при 0oС в течение 0,5 ч, при 25oС 0,5 ч, чистым кислородом при 40oС в течение 3 ч и гидролизом полученной реакционной массы водой.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, патент, 4584419, кл | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
US, патент, 4751334, кл | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Мельникова Л.М | |||
Хим.пром | |||
за рубежом, 1984, N 9, с | |||
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя | 1920 |
|
SU57A1 |
Авторы
Даты
1998-01-20—Публикация
1995-11-10—Подача