Изобретение относится к неорганической химии и химической технологии, а именно к синтезу гидроксида алюминия, который применяют при получении каталитических носителей, катализаторов, керамики.
Известен способ получения гидроксида алюминия, при котором алкоголяты алюминия общей формулы Аl(OR)3(R = алкил), синтезированные из металлического алюминия и спирта ROH, гидролизуют при 90oС водно-спиртовым раствором и образующийся гидроксид алюминия подвергают гидротермальному старению [1]. Синтезированный гидроксид алюминия обладает высокой чистотой, что важно для ряда направлений его дальнейшего использования, например, при получении термостойких Al2O3 - носителей катализаторов с высокой удельной поверхностью. Основным недостатком способа является дороговизна алкоголятов алюминия, что обуславливает и высокую стоимость получаемого гидроксида алюминия.
Известен ряд вариантов способа получения гидроксида алюминия из металлического алюминия и водного раствора основания, например [2, 3], наиболее близким из которых является способ, при котором нагревание алюминия и водного раствора основания осуществляют при 40-70oС и pН, превышающей 12,4 [4]. Образующийся при взаимодействии алюминия и основания алюминат подвергают разложению до гидроксида алюминия, выделяющегося преимущественно в форме байерита или гиббсита Al(OH)3. В качестве основания предпочтительно используют органическое основание холин . Способ позволяет синтезировать высококачественные порошки гидроксида алюминия с низким содержанием Na2O, а также гидроксид алюминия, содержащий 0,01-10 мас.% модифицирующих оксидов. Однако холин является дорогостоящим продуктом. Кроме того, основной товарной формой холина является его раствор в метаноле, который является высокотоксичным растворителем. Таким образом, высокая стоимость органического основания (холин) и токсичность реагентов являются основными недостатками способа.
Предлагаемый способ позволяет преодолеть указанные недостатки.
Предлагаемый способ получения гидроксида алюминия заключается в том, что в качестве органического основания используют этаноламины общей формулы NHn(CH2CH2OH)3-n, где n = 0, 1, 2. Предпочтительно, чтобы мольное соотношение алюминия : этаноламин : вода составляло 1 : (0,1-10) : (2-50). В гидроксид алюминия возможно введение 0,01-15 мас.% модифицирующих оксидов.
Отличием предлагаемого способа от прототипа является использование в качестве органического основания этаноламинов общей формулы NHn(CH2CH2OH)3-n, где n = 0, 1, 2. Этаноламины являются сравнительно недорогими нетоксичными продуктами, нашедшими широкое распространение в промышленности и быту, например, в качестве добавки к моющим составам. Выпускными формами являются чистые индивидуальные этаноламины, а не метанольные растворы как в случае холина. Кроме того, этаноламины легко очистить от примесей металлов, в том числе и натрия, путем перегонки, тогда как для холина это невозможно.
Химизм процесса заключается в генерировании алюмината Al + NHn(CH2CH2OH)3-n + 2 H2O + 3/2 H2 и его последующем гидролизе Al2O3•(х+1)Н2О + 2NHn(CH2CH2OH)3-n
Cинтезированный гидроксид алюминия по составу и кристаллическому строению соответствует гидратированному бемиту Аl(О)ОН. При образовании алюмината выделяется водород и необходимо создавать условия, исключающие образование взрывоопасных смесей водорода и воздуха.
Наработку алюмината проводят при температуре выше 40oС, предпочтительно при температуре кипения реакционной смеси, составляющей от 105 до 125oС. Для синтеза используют гранулы, фольгу, стружку или порошок алюминия с низким содержанием примесей щелочных металлов, например, алюминий марки А-99. Применяют химически чистые или перегнанные моно-, ди- триэтаноламины, а также деионизированную или дистиллированную воду. Все это обеспечивает низкое содержание примесей в полученном гидроксиде алюминия.
Растворение алюминия завершается от 3-4 до 30-40 ч. По завершении реакции выделение водорода прекращается. После этого отделяют реакционную массу от непрореагировавшего шлама, разбавляют 1-10 объемами воды и выдерживают 1-20 ч при 20-80oС для завершения разложения алюмината до гидроксида алюминия.
По предлагаемому способу, как и по прототипу, можно получать гидроксид алюминия, модифицированный оксидами различных металлов, которые вводят на стадии наработки алюмината или при его разложении в виде различных соединений металлов (оксиды, гидроксиды, неорганические соли, алкоголяты). Такие модифицированные гидроксиды алюминия обеспечивают особые свойства получаемых далее материалов. Так, при введении оксида бария (пример 5) получают модифицированный гидроксид алюминия, позволяющий получать каталитические носители с повышенной термостойкостью при 1000-1200oС. Введение менее 0,01 мас.% модифицирующего оксида не сказывается существенным образом на свойствах гидроксида алюминия, а введение более 15 мас.% модификатора экономически более выгодно осуществлять при других способах получения модифицированных гидроксидов алюминия.
При введении менее 0,1 моль этаноламина и менее 2 моль воды на 1 моль алюминия скорость растворения алюминия снижается, а при использовании более 10 моль этаноламина и более 50 моль воды ускорения процесса не наблюдается, но производительность (съем продукции с единицы объема реактора) снижается.
Процесс по предлагаемому способу осуществляют периодически или непрерывно. При непрерывном процессе через определенные периоды в 2-10 ч часть реакционной массы отделяют и выделяют гидроксид алюминия. Фильтрат упаривают и снова вводят в синтез, а отогнанную воду используют при промывке новой партии гидроксида. В реактор периодически догружают алюминий с учетом его удаления в виде гидроксида и выгружают непрореагировавший шлам. Такой процесс является экологически чистым и практически безотходным. Непрерывный процесс можно осуществлять и с непрерывной циркуляцией реакционного раствора через реактор, аппарат для разложения алюмината и фильтр.
Пример 1. В трехгорлую колбу с мешалкой, термометром и обратным холодильником загружают 27 г (1 моль) алюминиевой стружки, 610 г (10 моль) моноэтаноламина и 800 г (50 моль) дистиллированной воды. Колбу нагревают на масляной бане при перемешивании 25 ч до прекращения выделения водорода. Реакционную массу сливают с непрореагировавшего шлама, разбавляют 2 л дистиллированной воды, нагревают 1 ч при 80oС и охлаждают. Выпавший гидроксид алюминия отфильтровывают, промывают 2 раза по 100 мл воды, высушивают в термошкафу (80oС, 5 ч). Получают 80,3 г белого порошка, содержащего 70,9 мас.% Аl2О3.
Мольное соотношение алюминий:моноэтаноламин:вода составляет 1:10:50.
Пример 2. В реакторе по примеру 1 нагревают 27 г (1 моль) порошка алюминия, 74,5 г (0,5 моль) триэтаноламина и 80 г (5 моль) дистиллированной воды. Через 5 ч сливают 1/2 реакционного раствора (75 мл) с непрореагировавшего алюминия. Продолжают нагревание колбы, а из отделенной реакционной смеси выделяют гидроксид алюминия, как в примере 1, (200 мл воды для разбавления и 2х50 мл воды для промывки). Получают 16 г гидроксида алюминия, содержащего 72,1 мас.% Al2O3. Из фильтрата отгоняют на роторном испарителе 300 мл воды и полученный водный раствор триэтаноламина добавляют в колбу. Через 3-5 ч повторяют операцию выделения гидроксида алюминия с использованием для разбавления и промывки отогнанной воды. Через 3-4 операции выделения гидроксида алюминия в колбу добавляют 20 г порошка алюминия и продолжают наработку алюмината и его разложение и т.д.
Мольное соотношение алюминий : триэтаноламин : вода составляет 1:0,5:5.
Пример 3. Синтез проводят, как в примере 1, из 27 г (1 моль) гранулированного алюминия, 210 г (2 моль) диэтаноламина и 180 г (10 моль) деионизированной воды. Для разбавления и промывки используют 500 и 2х100 мл воды. Получают 81 г гидроксида алюминия, содержащего 69,6 мас.% Аl2O3.
Мольное соотношение алюминий:диэтаноламин:вода равно 1:2:10.
Пример 4.
Синтез осуществляют, как в примере 1. Загрузка: 27 г (1 моль) алюминиевой фольги, 149 г (1 моль) триэтаноламина и 360 г (20 моль) дистиллированной воды. После отделения шлама к реакционной массе добавляют 26 г Ва(ОН)2, растворенного в 400 мл нагретой до 80oС дистиллированной воды. Получают 104,1 г белого порошка, содержащего 52,3 и 15 мас.% Аl2O3 и ВаО соответственно.
Мольное соотношение алюминий:триэтаноламин:вода равно 1:1:20. Содержание модифицирующей добавки 15 мас.%.
Пример 5. Синтез осуществляют в примере 2. Используют 27 г (1 моль) алюминиевой стружки, 10,5 г (0,1 моль) диэтаноламина и 36 г (2 моль) дистиллированной воды. Полученный гидроксид алюминия содержит 70,2 мас.% Аl2О3.
Мольное соотношение алюминий:диэтаноламин:вода равно 1:0,1:2.
Пример 6. Синтез проводят в примере 1, из 27 г (1 моль) гранулированного алюминия, 74,5 (0,5 моль) триэтаноламина и 240 г (15 моль) воды. Дополнительно вводят 0,008 г порошка α - Аl2O3 со средним размером частиц 0,3-0,5 мкм. Получают 80,5 г модифицированного гидроксида алюминия, содержащего 70,8 мас. % Аl2О3, при этом 0,01 мас.% составляет Аl2О3 в α - форме.
Мольное соотношение алюминий:триэтаноламин:вода составляет 1:0,5:15. Содержание модифицирующей добавки 0,01 мас.%.
Пример 7. Загрузка и проведение синтеза, как в примере 1. К реакционной массе перед добавлением воды приливают раствор 10,4 г тетраэтоксисилана в 40 мл этанола. Получают 83,8 г модифицированного гидроксида алюминия, содержащего 68 и 3,6 мас.% Аl2O3 и SiO2 соответственно.
Мольное соотношение алюминий:моноэтаноламин:вода равно 1:10:50. Содержание модифицирующей добавки 3,6 мас.%.
Содержание Na2O в гидроксидах алюминия, полученных по примерам 1-7, составляет менее 0,001 мас.%. В отличие от прототипа получают гидроксид алюминия преимущественно в форме бемита, что важно для получения каталитических носителей на основе γ - Аl2О3 с высокой удельной поверхностью. Модифицированные гидроксиды алюминия по примерам 4 и 7 используют при получении высокотемпературных носителей и катализаторов, а по примеру 6 - для получения высокочистой глиноземной керамики с пониженной температурой образования α - Аl2О3. Для этих целей предпочтительно использование модифицированных гидроксидов.
Источники информации
1. Патент Германии N 3823895, С 04 В 35/10, 1989.
2. Патент США N 5225229, С 01 F 7/02, 1993.
3. РСТ WO 90/00523, С 01 F 7/02, 1990.
4. РСТ WO 94/24048, С 01 F 7/02, 1994.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЙСОДЕРЖАЩИХ АЛКОКСИДНЫХ ГИДРОЛИЗАТОВ | 1995 |
|
RU2099344C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦЕОЛИТА БЕТА | 2002 |
|
RU2214965C1 |
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ ЖИДКИХ ТОПЛИВ ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ ПО МЕТОДУ ФИШЕРА-ТРОПША И КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2444557C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕНА | 2010 |
|
RU2438775C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕОЛИТА-А, ПРИГОДНОГО В КАЧЕСТВЕ ДЕТЕРГЕНТНОЙ МОДИФИЦИРУЮЩЕЙ ДОБАВКИ | 2000 |
|
RU2248939C1 |
КАТАЛИЗАТОР ДЛЯ КОНВЕРСИИ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C-C, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ КОНВЕРСИИ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C-C В ВЫСОКООКТАНОВЫЙ БЕНЗИН И/ИЛИ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ | 2002 |
|
RU2236289C1 |
КАТАЛИЗАТОР ДЛЯ ПРЕВРАЩЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C-C, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПРЕВРАЩЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C-C В ВЫСОКООКТАНОВЫЙ БЕНЗИН И/ИЛИ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ | 2003 |
|
RU2235590C1 |
СИНТЕЗ КРИСТАЛЛОВ ZSM-48 С ИСПОЛЬЗОВАНИЕМ ГЕТЕРОСТРУКТУРНЫХ ЗАТРАВОК, НЕ ЯВЛЯЮЩИХСЯ ZSM-48 | 2005 |
|
RU2361812C2 |
ЗОЛИ НА ОСНОВЕ КРЕМНЕЗЕМА, ИХ ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ | 2005 |
|
RU2363655C2 |
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВА ДЛЯ ОБРАБОТКИ ПИГМЕНТОВ | 2001 |
|
RU2193047C1 |
Изобретение предназначено для получения гидроксида алюминия, который используют при получении каталитических носителей, катализаторов, керамики. Гидроксид алюминия получают путем нагревания металлического алюминия с водным раствором органического основания, в качестве которого используют этаноламин общей формулы NHn(CH2CH2OH)3-n, где n = 0, 1, 2. Мольное соотношение алюминий : этаноламин : вода равно 1 :(0,1 - 10):(2 - 50). Данный способ позволяет снизить стоимость и токсичность процесса. 2 з.п. ф-лы.
Экономайзер | 0 |
|
SU94A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА МЕТАЛЛА | 1992 |
|
RU2040470C1 |
Способ получения гидроксида алюминия | 1991 |
|
SU1787941A1 |
Способ снижения эндогенной пожароопасности выработанного пространства | 1983 |
|
SU1121458A1 |
US 4744974 А, 1988 | |||
US 4151267 А, 1979 | |||
DE 3823895, 1973 | |||
Катодное реле | 1918 |
|
SU159A1 |
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЙОРГАНИЧЕСКИХ ОЛИГОМЕРОВ | 0 |
|
SU199396A1 |
US 5217940 А, 1993. |
Авторы
Даты
1998-07-10—Публикация
1997-05-15—Подача