Изобретение относится к струйной технике, преимущественно к жидкостно-газовым струйным аппаратам для получения вакуума.
Известен жидкостно-газовый струйный аппарат, содержащий установленное в приемной камере и подключенное к источнику активной среды сопло и установленную на выходе из сопла и подключенную к приемной камере камеру смешения [6].
Однако данный струйный аппарат имеет сравнительно низкий КПД, что связано с низкой эффективностью использования энергии жидкостной струи.
Наиболее близким к описываемому является струйный аппарат, содержащий установленное в приемной камере и подключенное к источнику активной среды сопло и установленную за соплом и подключенную к приемной камере камеру смешения, причем сопло снабжено каналами подвода эжектируемой среды в проточную часть сопла, а приемная камера подключена к источнику эжектируемой среды [1] .
В данном струйном аппарате организовано фактически двухступенчатое смешение активной и эжектируемой сред, что позволяет повысить интенсивность откачки среды, однако, энергия активной среды в данном струйном аппарате используется недостаточно эффективно, что связано с недостаточной турбулизацией потока и в силу этого, сравнительно небольшой площадью контакта активной и эжектируемой сред на начальном участке камеры смешения.
Задачей, на решение которой направлено изобретение, является повышение КПД жидкостно-газового струйного аппарата путем интенсификации процесса смешения активной и эжектируемой (пассивной) сред.
Указанная задача решается тем, что в жидкостно-газовом струйном аппарате, содержащем установленное в приемной камере и подключенное к источнику активной жидкой среды сопло и установленную за выходным сечением сопла и подключенную к приемной камере камеру смешения, сопло снабжено каналами подвода среды в проточную часть сопла, приемная камера подключена к источнику эжектируемой среды и каналы подвода среды подключены со стороны входа в них к источнику активной среды, а со стороны выхода - к выходному участку боковой поверхности проточной части сопла.
Кроме того, выходные участки каналов подвода среды могут быть расположены радиально относительно оси сопла, могут быть расположены в радиальных плоскостях сопла и наклонены под острым углом к оси сопла, а также могут быть расположены в тангенциальном направлении по отношению к оси сопла. Расход активной среды через каналы подвода среды предпочтительно выбирать в диапазоне 5 - 40% от расхода активной среды через сопло.
В другом варианте выполнения жидкостно-газового струйного аппарата последний дополнительно снабжен распределительным коллектором, расположенным со стороны входа в сопло, и последнее подключено к источнику активной среды через указанный коллектор.
В этом случае источник активной среды может быть подключен к соплу через боковую поверхность распределительного коллектора, может быть подключен к боковой и торцевой поверхностям коллектора, причем со стороны боковой поверхности подвод активной среды может быть осуществлен как радиально, так и тангенциально относительно оси сопла, а также в радиальной плоскости под острым углом к оси сопла, при этом предпочтительно подавать через боковую поверхность распределительного коллектора 5 - 95% расхода активной среды через сопло.
Выполнение жидкостно-газового струйного аппарата указанным образом позволяет интенсивно турбулизировать поток активной среды в проточной части сопла, добиваясь этим того, что в камеру смешения из сопла истекает мелкодисперсный поток состоящий из мельчайших капель, что позволяет в сотни раз увеличить площадь контакта активной (эжектирующей) и эжектируемой сред, что ведет к интенсивной откачке последней из вакуумируемого пространства.
Располагая выходные сечения каналов подвода среды под различными углами и направлениями, можно регулировать как степень и масштаб турбулентности активной среды, так и угол конусности распыла активной среды на выходе из сопла, что позволяет в зависимости от различных условий эксплуатации струйного аппарата разрабатывать аппараты с различной длиной и различным диаметром камеры смешения.
Дополнительные возможности в вопросе турбулизации потока активной среды дает выполнение струйного аппарата с распределительным коллектором, поскольку представляется возможность дополнительно формировать поток активной среды, например задавать необходимую величину степени и масштаба турбулентности, а также закрутки потока перед тем, как поток активной среды выйдет из сопла или встретится в сопле с потоком, выходящим из каналов подвода среды.
Направляя потоки под различными углами и с различной величиной осевой и тангенциальной составляющей скорости потока и формируя активный поток с различной степенью и масштабом турбулентности, можно добиться требуемого в каждом конкретном случае режима истечения активной среды из сопла.
Таким образом, описываемые конструкции жидкостно-газовых струйных аппаратов позволяют решить поставленную задачу, а именно повысить КПД струйного аппарата.
На чертеже схематически представлен описываемый жидкостно-газовый струйный аппарат.
Жидкостно-газовый струйный аппарат содержит установленное в приемной камере 1 и подключенное к источнику активной среды сопло 2 и установленную за срезом сопла 2 и подключенную к приемной камере 1 камеру 3 смешения, причем сопло 2 снабжено каналами 4 подвода среды в проточную часть сопла 2, а приемная камера 1 подключена к источнику 5 эжектируемой среды. Каналы 4 подвода среды подключены со стороны входа в них к источнику активной среды, а со стороны выхода - к выходному участку боковой поверхности проточной части сопла 2.
Выходные участки каналов 4 подвода среды могут быть расположены радиально относительно оси сопла 2, в радиальных плоскостях сопла 2 и наклонены под острым углом к оси сопла 2, в тангенциальном направлении по отношению к оси сопла. Расход через каналы 4 подвода среды предпочтительно 5 - 40% расхода активной среды через сопло.
Жидкостно-газовый струйный аппарат может быть дополнительно снабжен распределительным коллектором 6 расположенным со стороны входа в сопло 2 и соединяющим сопло 2 с источником активной жидкой среды. Источник активной среды может быть подключен к соплу 2 через боковую поверхность 7 распределительного коллектора 6 либо как через боковую поверхность 7, так и через торцевую поверхность 8 коллектора 6, причем в этом случае со стороны боковой поверхности 7 подвод активной среды может быть осуществлен как радиально, так и тангенциально оси сопла 2, а также под некоторым острым углом к этой оси.
Экспериментально установлено, что эффективно подавать через боковую поверхность 7 распределительного коллектора 6 5 - 95/% расхода активной среды через сопло 2, а через каналы 4 подвода среды 5 - 40% расхода активной среды через сопло 2.
Описываемый жидкостно-газовый струйный аппарат работает следующим образом.
Активная жидкая среда подается в сопло 2 как через входное сечение сопла 2, так и через каналы 4. В результате соударения двух потоков, поступающих в сопло 2 под разными углами относительно оси сопла, поток активной жидкой среды турбулизируется, что приводит при истечении жидкой среды из сопла 2 к образованию мелкодисперсного потока, состоящего из большого числа мелких капель. Данный эффект достигается и при использовании распределительного коллектора 6, но с другой степенью и масштабом турбулентности активной жидкой среды в выходном сечении сопла 2. Истекая из сопла 2, активная среда увлекает эжектируемую среду поступающую из источника 5 через приемную камеру 1 в камеру 3 смешения струйного аппарата. Из камеры 3 смешения смесь сред поступает в диффузор 9, где кинетическая энергия потока смеси сред частично преобразуется в потенциальную энергию давления, и далее поток из струйного аппарата поступает по назначению.
Изобретение может быть использовано на предприятиях нефтеперерабатывающей, химической, пищевой и других отраслей промышленности.
название | год | авторы | номер документа |
---|---|---|---|
УСТАНОВКА ДЛЯ ПЕРЕГОНКИ ЖИДКОГО ПРОДУКТА | 1995 |
|
RU2091117C1 |
ЖИДКОСТНО-ГАЗОВЫЙ СТРУЙНЫЙ АППАРАТ | 2001 |
|
RU2197645C1 |
ЖИДКОСТНО-ГАЗОВЫЙ СТРУЙНЫЙ АППАРАТ | 1998 |
|
RU2132976C1 |
СПОСОБ РАБОТЫ ВАКУУМСОЗДАЮЩЕЙ НАСОСНО-ЭЖЕКТОРНОЙ УСТАНОВКИ И УСТРОЙСТВА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1998 |
|
RU2135841C1 |
НАСОСНО-ЭЖЕКТОРНАЯ КОМПРЕССОРНАЯ УСТАНОВКА | 2002 |
|
RU2216651C1 |
СПОСОБ ВАКУУМНОЙ ПЕРЕГОНКИ ЖИДКОГО ПРОДУКТА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2083638C1 |
СПОСОБ СОЗДАНИЯ ВАКУУМА ПРИ ПЕРЕГОНКЕ ЖИДКОГО ПРОДУКТА | 1996 |
|
RU2102433C1 |
УСТАНОВКА ДЛЯ СОЗДАНИЯ ВАКУУМА ПРИ ПЕРЕГОНКЕ ЖИДКОГО ПРОДУКТА | 1997 |
|
RU2112577C1 |
УСТАНОВКА ПЕРЕГОНКИ ЖИДКОГО ПРОДУКТА | 2001 |
|
RU2197646C1 |
НАСОСНО-ЭЖЕКТОРНАЯ УСТАНОВКА | 1995 |
|
RU2084707C1 |
Использование: струйный аппарат предназначен, преимущественно, для получения вакуума. Каналы подвода среды подключены со стороны входа в них к источнику активной среды, а со стороны выхода к выходному участку боковой поверхности проточной части сопла. В другом варианте выполнения каналы подвода среды подключены к выходному участку боковой поверхности сопла и сопло со стороны входа снабжено распределительным коллектором и подключено к источнику активной среды через указанный коллектор. В результате достигается интенсификация процесса смешения активной и эжектируемой сред. 2 с. и 9 з.п. ф-лы, 1 ил.
Авторы
Даты
1998-07-10—Публикация
1997-01-14—Подача