СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРЕКИСИ ЭТИЛБЕНЗОЛА Российский патент 1998 года по МПК C07C409/08 C07C407/00 

Описание патента на изобретение RU2117005C1

Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения окиси пропилена и стирола.

Известно, что гидроперекиси алкилароматических углеводородов получают окислением соответствующего углеводорода при повышенной температуре в присутствии щелочных добавок и инициатора окисления с последующим выделением целевого продукта известными приемами [1].

Известен способ получения гидроперекиси этилбензола в жидкой фазе [2], в котором от жидкого продукта реакции, извлекаемого из реакционной зоны, отделяют неконденсируемые инертные газы, которые возвращают в реакционную зону для регулирования температуры реакции. Целевой продукт извлекают из жидкой фазы последней реакционной зоны. Непрореагировавший этилбензол рециркулируют.

Наиболее близким способом получения органических гидроперекисей является способ окисления алкилароматических углеводородов молекулярным кислородом в жидкой фазе в присутствии катализатора. Реакцию окисления также термически инициируют малоустойчивыми соединениями, например перекисями или гидроперекисями [3].

Для повышения конверсии этилбензола и селективности образования гидроперекиси этилбензола и снижение расхода катализатора предлагается способ жидкофазного окисления этилбензола до гидроперекиси этилбензола при повышенной температуре кислородом воздуха в присутствии катализатора и инициирующей добавки. В качестве катализатора и инициирующей добавки используют сконденсировавшуюся часть потока отработанного воздуха со стадии окисления этилбензола, обработанную гидроокисью натрия, и/или используют поток, образующийся при отмывке и/или нейтрализации продуктов реакции от кислых примесей. Добавку берут в количестве 0,00003-0,003 мас.% в расчете на натрий от реакционной массы.

Из литературы не известно о применении в процессе получения гидроперекиси этилбензола в качестве катализатора и инициирующей добавки указанных потоков, что позволяет сделать вывод о соответствии предлагаемого изобретения критериям "новизна" и "изобретательский уровень". Возможность использования предлагаемого технического решения в промышленном способе получения гидроперекиси этилбензола показывает соответствие изобретения критерию "промышленная применимость".

Заявляемое изобретение подтверждается следующими примерами.

Пример 1
Окисление этилбензола кислородом воздуха осуществляют на лабораторной непрерывнодействующей стендовой установке, выполненной из металла при температуре 155oC, давлении 4,5 атм, объемной скорости подачи воздуха 150 ч-1 и длительности опыта 1 ч с использованием катализатора - инициирующей добавки. Катализатор-инициирующую добавку получают следующим образом: отработанный воздух после реактора окисления этилбензола пропускают последовательно через холодильники- конденсаторы, охлаждаемые воздухом, водой и аммиаком. Полученный при этом конденсат собирают, обрабатывают щелочью и, после анализа методами хроматографии и потенциометрического анализа, направляют в реактор окисления для использования в качестве катализатора и инициатора окисления этилбензола. Согласно выполненному анализу состав этого потока содержит смесь соединений, таких как NaOH(2 мас.%), Na2CO3,(2 мас.%), бензоат натрия (1 мас. %), надмуравьиная кислота (0,0005 мас.%), надуксусная кислота (0,0005 мас. %), перекись водорода (0,5 мас.%), гидроперекись этилбензола (0,2 мас. %), муравьиная кислота (0,001 мас.%), уксусная кислота (0,001 мас.%), бензойная кислота (0,05 мас.%), ацетофенон и метилфенилкарбинол по 0,05 мас.% каждый. Содержание катализатора- инициирующей добавки в реакционной массе 0,00005 мас.% в расчете на натрий.

По окончании опыта содержание гидроперекиси этилбензола (ГПЭБ) в реакционной массе окисления, определенное методом йодометрического титрования 14,7 мас.%. Селективность образования гидропероксида 91 мол.%.

Пример 2
Окисление этилбензола кислородом воздуха осуществляют на непрерывнодействующей лабораторной стендовой установке выполненной из металла при температуре, давлении, подаче воздуха и продолжительности, как в примере 1. Содержание катализатора-инициирующей добавки в реакционной массе окисления 0,003 мас.% в расчете на натрий. Поток, используемый в качестве катализатора и инициирующей добавки, получают следующим образом. Окисленный этилбензол направляют на двухступенчатую отмывку водой для извлечения из состава окисленных продуктов иона натрия и органических кислот. При этом получают водную фазу, содержащую перекись водорода, гидроперекись этилбензола, муравьиную и бензойные кислоты, этилбензол, ацетофенон и метилфенилкарбинол и H2CO3. В полученную водную фазу вводят водный раствор NaOH для нейтрализации кислот и направляют в реактор окисления для использования в качестве инициирующей добавки получения гидропероксида.

Общее содержание иона натрия в полученной таким образом инициирующей добавке 2,11 мас. %, из которых 1 мас.% приходится на долю NaOH; 0,7 мас.% - NaHCO3; 0,1 мас.% - Na2CO3; 0,1 мас.% - бензоат натрия; 0,01 мас.% - формиат натрия и 0,2 мас.% - натровая соль гидроперекиси этилбензола. Инициирующая добавка содержит также 0,01 мас.% перекиси водорода, 0,1 мас.% гидроперекиси этилбензола, 0,01 мас.% - ацетофенона, 0,01 мас.% - метилфенилкарбинола, 0,2 мас.% бензойной кислоты и 0,001 мас.% - этилбензола.

Скорость подачи воздуха 110 л/ч. Длительность опыта 1 ч.

По окончании опыта содержание ГПЭБ в реакционной массе окисления, определенное методом йодометрического титрования 14,85 мас.%. Селективность образования гидропероксида 91,3 мол.%.

Пример 3
Окисление этилбензола кислородом воздуха осуществляют на непрерывнодействующей лабораторной стендовой установке, выполненной из металла при температуре, давлении, подаче воздуха и продолжительности, как в примере 1. Содержание катализатора-инициирующей добавки в реакционной массе окисления 0,00005 мас.% в расчете на натрий. Катализатор и инициирующую добавку получают следующим образом.

Окисленный этилбензол направляют на двухступенчатую отмывку водой для извлечения из состава окисленных пролетов иона натрия и органических кислот. При этом получают водную фазу, содержащую перекись водорода, гидроперекись этилбензола, муравьиную и бензойные кислоты, этилбензол, ацетофенон и метилфенилкарбинол и H2CO3.

Общее содержание иона натрия в полученном таким образом катализаторе-инициаторе 0,003 мас.%, в виде бензоата натрия. Катализатор содержит также 1 мас. % перекиси водорода, 0,5 мас.% гидроперекиси этилбензола, 0,01 мас.% - ацетофенона, 0,01 мас.% - метилфенилкарбинола, 0,2 мас.%. бензойной кислоты, 0,01 мас.% муравьиной кислоты, 0,001 H2CO3 и 0,001 мас.% - этилбензола.

Скорость подачи воздуха 110 л/ч. Длительность опыта 1 ч.

По окончании опыта содержание ГПЭБ в реакционной массе окисления, определенное методом йодометрического титрования 14,9 мас.%. Селективность образования гидропероксида 91,8 мол.%.

Пример 4
Окисление этилбензола кислородом воздуха осуществляют на непрерывнодействующей лабораторной стендовой установке, выполненной из металла при температуре, давлении, подаче воздуха и продолжительности, как в примере 1. Содержание катализатора-инициирующей добавки в реакционной массе окисления 0,0003 мас.%. Катализатор и инициирующую добавку получают следующим образом.

Отработанный воздух после реактора окисления направляют на отмывку в скруббер, где подвергают очистке от кислых примесей обработкой 2 мас.% водным раствором NaOH. Полученный на выходе из скруббера водный щелочной раствор, содержащий, согласно результату анализа методами потенциометрического титрования и хроматографии, 1,75 мас.% Na2CO3 и 2 мас.% бензоата натрия, а также 0,02 мас.% ацетофенона и 0,03 мас.% метилфенилкарбинола, направляют в реактор окисления для использования в качестве катализатора - инициирующей добавки окисления этилбензола.

Скорость подачи воздуха 110 л/ч.

Длительносгь опыта 1 ч.

По окончании опыта содержание ГПЭБ в реакционной массе окисления, определенное методом йодометрического титрования 14,5 мас.% Селективность образования гидропероксида 91,1 мол.%.

Пример 5
Окисление этилбензола кислородом воздуха осуществляют на непрерывнодействующей лабораторной стендовой установке, выполненной из металла при температуре, давлении, подаче воздуха и продолжительности, как в примере 1. Содержание катализатора-инициирующей добавки в реакционной массе окисления 0,0003 мас.% в расчете на натрий. Катализатор и инициирующую добавку получают следующим образом.

Отработанный воздух после реактора окисления направляют на отмывку в скруббер, где подвергают очистке от кислых примесей обработкой 2 мас.% водным раствором Na2CO3. Полученный на выходе из скруббера водный щелочной раствор, содержащий согласно результату анализа методами потенциометрического титрования и хроматографии, 1,24 мас.% Na2CO3 и 2,37 мас.% бензоата натрия, а также 0,03 мас.% ацетофенона и 0,03 мас.% метилфенилкарбинола, направляют в реактор окисления для использования в качестве инициатора окисления этилбензола.

Скорость подачи воздуха 110 л/ч. Длительность опыта 1 час.

По окончании опыта содержание ГПЭБ в реакционной массе окисления, определенное методом йодометрического титрования 14,5 мас.%. Селективность образования гидропероксида 91,1 мол.%.

Пример 6
Окисление этилбензола кислородом воздуха осуществляют на непрерывнодействующей лабораторной стендовой установке, выполненной из металла при температуре, давлении, подаче воздуха и продолжительности, как в примере 1. Содержание катализатора-инициирующей добавки в реакционной массе окисления 0,003 мас.% в расчете на натрий. Катализатор и инициирующую добавку получают следующим образом.

Окисленный этилбензол направляют на непрерывнодействующую лабораторную ректификационную колонну, на которой при пониженном давлении отделяют в качестве верхнего продукта возвратный этилбензол. Полученный этилбензол поступает в диафрагменный смеситель, в котором происходит отмывка его от кислых примесей (органических кислот) 5 мас.% раствором NaOH. При этом получают водную фазу, содержащую 0,5 мас.% перекиси водорода, 0,2 мас.% гидроперекись этилбензола, 0,01 мас.% этилбензола, 0,95 мас.% NaOH, 0,4 мас.% Na2CO3 и 7,4 мас.% бензоата натрия. Полученный водный щелочной раствор частично направляют в реактор окисления для использования в качестве катализатора и инициатора получения гидропероксида.

Скорость подачи воздуха 110 л/ч. Длительность опыта 1 час.

По окончании опыта содержание ГПЭБ в реакционной массе окисления, определенное методом иодометрического титрования 14,64% мас.%. Селективность образования гидропероксида 91,46 мол.%.

Пример 7
Окисление этилбензола кислородом воздуха осуществляют в условиях примера 1. Содержание катализатора-инициирующей добавки в реакционной массе окисления 0,003 мас. % в расчете на натрий. Катализатор и инициирующую добавку получают следующим образом.

Смесь потока конденсата, полученного аналогично примеру 1, и водного потока с отмывки продуктов реакции, полученного аналогично примеру 2, взятых в равных количествах, направляют в реактор окисления для использования в качестве инициирующей добавки.

Скорость подачи воздуха 110 л/ч. Длительность опыта 1 ч.

По окончании опыта содержание ГПЭБ в реакционной массе окисления, определенное методом йодометрического титрования 14,54 мас.%. Селективность образования гидропероксида 91,2 мол.%.

Как видно из приведенных примеров, использование в качестве катализатора-инициирующей добавки потоков, образующихся при отмывке и/или нейтрализации продуктов реакции от кислых примесей и/или сконденсировавшейся части потока отработанного воздуха со стадии окисления этилбензола позволяет повысить селективность образования гидроперекиси этилбензола и снизить расход щелочи, используемой в качестве катализатора.

Похожие патенты RU2117005C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРОКСИДА ЭТИЛБЕНЗОЛА 1998
  • Галимзянов Р.М.
  • Белокуров В.А.
  • Петухов А.А.
  • Галиев Р.Г.
  • Серебряков Б.Р.
  • Зуев В.П.
  • Мустафин Х.В.
  • Лемаев Н.В.
  • Нургалиев Н.С.
  • Васильев И.М.
RU2128647C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРОКСИДА ЭТИЛБЕНЗОЛА 1996
  • Зайцев Н.М.
  • Петухов А.А.
  • Комаров В.А.
  • Сахапов Г.З.
  • Васильев И.М.
  • Белокуров В.А.
  • Нургалиев Н.С.
  • Руссак А.В.
RU2114104C1
РЕАКТОРНОЕ УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ГИДРОПЕРЕКИСИ ЭТИЛБЕНЗОЛА 1996
  • Серебряков Б.Р.
  • Сахапов Г.З.
  • Ворожейкин А.П.
  • Нефедов Е.С.
  • Коваленко В.В.
  • Белокуров В.А.
  • Васильев И.М.
  • Петухов А.А.
RU2116295C1
КАТАЛИЗАТОР ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Белокуров В.А.
  • Бусыгин В.М.
  • Васильев И.М.
  • Галимзянов Р.М.
  • Зуев В.П.
  • Минуллин А.Ф.
  • Мышкин А.И.
  • Петухов А.А.
  • Ахметов Р.М.
RU2240181C1
Способ получения гидропероксида этилбензола 2016
  • Петухов Александр Александрович
  • Шайхутдинов Радик Закирович
  • Харлампиди Харлампий Эвклидович
RU2633362C2
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ 1999
  • Харлампиди Х.Э.
  • Чиркунов Э.В.
  • Мирошкин Н.П.
  • Мустафин Х.В.
RU2144025C1
СПОСОБ ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ 2004
  • Бусыгин В.М.
  • Харлампиди Х.Э.
  • Батыршин Н.Н.
  • Елиманова Г.Г.
  • Гильманов Х.Х.
  • Белокуров В.А.
  • Гильмутдинов Н.Р.
  • Ахметов Р.М.
  • Зуев В.П.
  • Васильев И.М.
  • Мирошкин Н.П.
  • Петухов А.А.
  • Стоянова Л.Ф.
  • Галимзянов Р.М.
  • Мышкин А.И.
  • Шепелин В.А.
RU2263671C1
СПОСОБ ЖИДКОФАЗНОГО ОКИСЛЕНИЯ ЭТИЛБЕНЗОЛА ДО ГИДРОПЕРЕКИСИ ЭТИЛБЕНЗОЛА 2007
  • Бреед Антониус Йоханнес Мария
  • Хортон Эндрю Дэвид
  • Клюсенер Петер Антон Аугуст
RU2464260C2
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРИМОГО МОЛИБДЕНОВОГО КАТАЛИЗАТОРА ЭПОКСИДИРОВАНИЯ 1997
  • Петухов А.А.
  • Беляев С.П.
  • Галиев Р.Г.
  • Харлампиди Х.Э.
  • Серебряков Б.Р.
  • Васильев И.М.
  • Белокуров В.А.
  • Галимзянов Р.М.
  • Мышкин А.И.
RU2125485C1
СПОСОБ ПОЛУЧЕНИЯ МОЛИБДЕНОВОГО КАТАЛИЗАТОРА ДЛЯ ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ 2014
  • Харлампиди Харлампий Эвклидович
  • Гайфуллин Анвар Ахметович
  • Елиманова Галина Геннадьевна
  • Тунцева Светлана Николаевна
  • Батыршин Николай Николаевич
  • Мирошкин Николай Петрович
RU2556002C1

Реферат патента 1998 года СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРЕКИСИ ЭТИЛБЕНЗОЛА

Изобретение относится к нефтехимической промышленности и может быть использовано в процессе совместного получения окиси пропилена и стирола. Цель изобретения: повышение конверсии этилбензола и селективности образования гидроперекиси этилбензола и снижение расхода катализатора. Поставленная цель достигается способом жидкофазного окисления этилбензола до гидроперекиси этилбензола при повышенной температуре кислородом воздуха в присутствии катализатора и инициирующей добавки. В качестве катализатора и инициирующей добавки используют сконденсировавшуюся часть потока отработанного воздуха со стадии окисления этилбензола, обработанную гидроокисью натрия, и/или используют поток, образующийся при отмывке и/или нейтрализации продуктов реакции от кислых примесей. Добавку берут в количестве 0,00003-0,003 мас.% в расчете на натрий от реакционной массы. 1 з.п.ф-лы.

Формула изобретения RU 2 117 005 C1

1. Способ получения гидроперекиси этилбензола жидкофазным каталитическим окислением этилбензола кислородом воздуха при повышенной температуре в присутствии катализатора и инициирующей добавки, отличающийся тем, что в качестве катализатора и инициирующей добавки используют сконденсировавшуюся часть потока отработанного воздуха со стадии окисления этилбензола, обработанную гидроокисью натрия, и/или поток, образующийся при отмывке и/или нейтрализации продуктов реакции от кислых примесей. 2. Способ по п. 1, отличающийся тем, что добавку берут в количестве 0,00003 - 0,03 мас.% в расчете на натрий от реакционной массы.

Документы, цитированные в отчете о поиске Патент 1998 года RU2117005C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
SU, авторское свидетельство, 259884, кл
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
GB, патент, 1502045, кл
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
CS, авторское свидетельство, 196648, кл
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1

RU 2 117 005 C1

Авторы

Серебряков Б.Р.

Путехов А.А.

Галиев Р.Г.

Белокуров В.А.

Васильев И.М.

Даты

1998-08-10Публикация

1997-06-20Подача