СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ Российский патент 2000 года по МПК C07C315/02 C07C315/00 

Описание патента на изобретение RU2144025C1

Изобретение относится к способу получения сульфоксидов, которые могут найти применение в качестве экстрагентов редких и благородных металлов, флотореагентов в металлургии или в качестве биологически активных веществ, перспективных для использования в сельском хозяйстве. Кроме того, эта технология применима и для предварительного обессеривания высоковязких нефтей, в том числе высококипящих фракций высокосернистых нефтей, до стадии их промышленной гидроочистки.

Известен способ получения сульфоксидов окислением сульфидов нефтяного происхождения органическими гидропероксидами в присутствии уксусной кислоты или щелочи. Выход целевого продукта 60 - 70%, глубина окисления 43 - 74% (AC СССР N 392687, МКИ C 07 C 147/00, БИ N 21, 1975 г.).

Недостатками способа являются невысокая глубина окисления до сульфоксидов (0,43 - 0,74), сравнительно невысокие скорости окисления, а также низкое качество сульфоксидов (содержание сульфоксидной серы в выделенных продуктах 7,3%).

Известен способ получения сульфоксидов окислением дистиллятов сернистых нефтей органическими гидропероксидами в присутствии нафтената молибдена совместно с ледяной уксусной кислотой в качестве катализатора при температуре 20 - 130oC. Глубина окисления 69 - 96%, выход целевого продукта 83 - 95% (АС СССР N 524799, МКИ C 07 C 147/14, БИ N 30, 1976 г.).

Недостатками известного способа являются использование концентрированных гидропероксидов, что делает способ взрывоопасным и дорогим, и относительно дорогого, неутилизируемого в настоящее время, молибденового катализатора. Отсутствие промышленного производства нафтената молибдена исключает получение нефтяных сульфоксидов в промышленных условиях.

К недостаткам обоих способов относится использование кислот как на стадии окисления, так и на стадии выделения сульфоксидов. Это требует больших затрат на очистку целевого продукта и оксидата, утилизацию кислых отходов и защиту оборудования от кислотной коррозии.

Задачей, решаемой предлагаемым изобретением, является разработка взрывобезопасного, более экологичного и простого способа получения сульфоксидов, исключение дефицитного, дорогого и нерегенерируемого в настоящее время в промышленных условиях молибденового катализатора.

Поставленная задача решается разработкой способа получения сульфоксидов окислением дистиллятов сернистых нефтей растворами перекисных соединений в присутствии катализатора с последующим выделением целевых продуктов известными приемами. Причем в качестве окислителя и катализатора используют гидроочищенную нефтяную фракцию с температурой кипения Ткип. = 205 - 360oC, окисленную до содержания перекисных соединений 2,2 • 10-2 - 20,6 • 10-2 моль/л.

Характеристики используемых компонентов.

Гидроочищенная нефтяная фракция (ГНФ) - Ткип. = 205 - 360oC, ρ = 0,839 г/см3, Sобщ. = 0,075 %, соответствует ГОСТ 305 - 82.

Окисленную ГНФ получают по известной технологии окислением кислородом воздуха или молекулярным кислородом в присутствии инициаторов окисления: гидропероксидов этилбензола (ГПЭБ) или изопропилбензола (гидроперекиси кумола - ГПК), или перекиси диизопропилбензола (перекиси дикумила - ПДК), концентрация которых лежит в интервале 1,0 • 10-2 - 9,0 • 10-2 моль/л (0,18 - 2,41%), (Х. Э. Харлампиди, Э.В. Чиркунов, А.А. Емекеев, Н.М. Лебедева, О.Н. Загретдинова, С.В. Павлов. Инициированное окисление нефтяных сульфидов кислородом воздуха. //Интенсификация химических процессов переработки нефтяных компонентов: Межвуз. тематич. сб. научн. трудов. /КГТУ, Казань, 1995, с. 64 - 71). Технологические параметры процесса: температура окисления 125 - 140oC, продолжительность окисления 1,5 - 4,0 часа, скорость подачи воздуха ωв = 2,64 л/мин. , кратность вспенивания 5, окисление ведут до суммарного содержания перекисных соединений в пределах 2,2 • 10-2 - 20,6 •10-2 моль/л (0,4 - 6,6%).

Поскольку в предлагаемом способе в конечном итоге выход целевого продукта в сравнении с прототипом не уменьшается, можно предположить, что окисленная ГНФ выполняет роль и окислителя, и катализатора процесса.

При окислении глубокоочищенных, например гидроочищенных топлив, в присутствии перекисных добавок сероорганические соединения, остающиеся в топливе, взаимодействуют с образующимися гидропероксидами. В результате дальнейших термоокислительных превращений первичных продуктов окисления в топливах обнаруживаются спирты, карбонильные производные, сульфокислоты, карбоновые кислоты и даже серная кислота (Г.Ф. Большаков. Образование гетерогенной системы при окислении углеводородных топлив. Новосибирск. "Наука", Сибирское отделение, 1990, с. 248).

Вышеперечисленные соединения в определенных условиях и при определенных концентрациях, как известно, являются катализаторами, используемыми при получении сульфоксидов (АС N 636880, МКИ C 07 C 147/14 БИ N 20, 1989 г., АС N 774173, МКИ C 07 C 147/14 БИ N 20, 1989 г.). По-видимому, это и позволяет используемой в предлагаемом способе окисленной гидроочищенной нефтяной фракции с заявленным содержанием перекисных соединений выполнять роль и окислителя, и катализатора окисления.

Раствор гидроперекиси этилбензола (ГПЭБ) концентрацией 25% - продукт с содержанием ГПЭБ 22 - 27%, получаемый как промежуточный продукт в производстве стирола и окиси пропилена (з-д СОП НПО "Нижнекамскнефтехим") в соответствии с регламентом цеха производства ГПЭБ. Состав, мас.%:
Гидроперекись этилбензола - 25,0
Этилбензол - 61,51
Ацетофенон - 6,0
Метилфенилкарбинол - 6,0
Бензальдегид - 0,09
Бензойная кислота - 1,0
Муравьиная кислота - 0,4
Раствор гидроперекиси изопропилбензола (ГПИПБ) концентрацией 28,4% - промежуточный продукт производства фенола - ацетона соответствует ТУ 38.402-62-121-90.

Состав, мас.%:
Гидроперекись этилбензола - 28,4
Изопропилбензол - 68,05
Ацетофенон - 0,63
Диметилфенилкарбинол - 2,43
Бензальдегид - 0,09
Муравьиная кислота - 0,4
Раствор гидроперекиси диизопропилбензола (перекись дикумила - ПДК) - кристаллическое вещество, основного вещества 99,4%, Тпл. = 38,3 - 39,5oC.

По предлагаемому способу получение сульфоксидов осуществляют путем смешения окисленной ГНФ с начальной концентрацией пероксидов 2,2•10-2 - 20,6•10-2 моль/л (0,4 - 6,6 мас. %) и дистиллята высокосернистой нефти. Процесс ведут в пеноэмульсионном режиме при кратности вспенивания 2-10 в выбранном интервале температур (60-110oC) и мольном соотношении исходных компонентов пероксид: сульфид 1,0 - 1,5 : 1,0. Подбор условий протекания процесса окисления, как и в прототипе, осуществляют, исходя из требуемой глубины окисления сульфидов и селективности процесса.

Приводим пример конкретного выполнения способа.

Фракцию Западно-Сургутской нефти с tкип = 290-360oC и содержанием общей серы 2,24%, сульфидной серы 0,83% окисляют в пеноэмульсионном режиме при кратности вспенивания 5: 1. Через 35,3 г дистиллята для его вспенивания пропускают воздух со скоростью в поперечном сечении 0,05 м/с, после чего дистиллят нагревают до 110oC и, не прекращая вспенивания, в указанном режиме прибавляют стехиометрическое количество - 41,5 г окисленной ГНФ с содержанием гидропероксидов 18,5•10-2 моль/л (3,35 мас.%). После окисления сульфидов в этом режиме в течение 90 мин и отгонки побочных продуктов (преимущественно, изопропилбензола и ацетофенона) из реакционной смеси при нагревании в вакууме водоструйного насоса содержание сульфоксидной серы в окисленном дистилляте составляет 0,35 мас. %. Из окисленного дистиллята экстракцией водным раствором моноэтилового эфира этиленгликоля выделено 95,2% сульфоксидов по отношению к сульфоксидам, находящимся в оксидате.

Продукт содержит серы - сульфоксидной - 9,4% и общей - 10,3%.

Результаты экспериментов, осуществляемых аналогично примеру 1 с различным содержанием перекисных соединений, приведены в таблице.

Выходы целевого продукта получены на уровне прототипа. Кажущиеся низкие абсолютные значения сульфоксидов (в сравнении с прототипом) в окисленном нефтяном дистилляте объясняются тем, что изначально при смешении нефтяного дистиллята с окисленной ГНФ происходит его разбавление, и концентрация сульфидной серы, подвергающейся окислению, уменьшается более, чем в два раза.

Заявляемый способ выгодно отличается от известных тем, что концентрация пероксидов в окисленной ГНФ невелика и совершенно не взрывоопасна. Кроме того, используемые в известных способах концентрированные гидропероксиды относятся ко 2-му классу токсичности, следовательно, значительное снижение их концентрации делает способ более экологичным и простым. Исключение большого количества кислых сточных вод также упрощает способ получения сульфоксидов. Поскольку соединения, содержащиеся в окисленной ГНФ, выполняют роль и окислителя, и катализатора нашего процесса, постольку и появляется возможность заменить дорогой и неутилизируемый молибденовый катализатор.

Похожие патенты RU2144025C1

название год авторы номер документа
Способ получения нефтяных сульфоксидов 2017
  • Рубцова Светлана Альбертовна
  • Кучин Александр Васильевич
  • Ляпина Нафиса Кабировна
  • Баева Лариса Асхатовна
RU2668810C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРОКСИДА ЭТИЛБЕНЗОЛА 1998
  • Галимзянов Р.М.
  • Белокуров В.А.
  • Петухов А.А.
  • Галиев Р.Г.
  • Серебряков Б.Р.
  • Зуев В.П.
  • Мустафин Х.В.
  • Лемаев Н.В.
  • Нургалиев Н.С.
  • Васильев И.М.
RU2128647C1
Способ получения сульфоксидов 1971
  • Бурмистрова Т.П.
  • Хитрик А.А.
  • Терпиловский Н.Н.
  • Гальперн Г.Д.
  • Караулова Е.Н.
  • Бардина Т.А.
SU392687A1
СПОСОБ ОБЕССЕРИВАНИЯ СВЕТЛЫХ НЕФТЯНЫХ ДИСТИЛЛЯТОВ 2002
  • Мазгаров А.М.
  • Вильданов А.Ф.
  • Копылов А.Ю.
  • Аслямов И.Р.
RU2235112C1
Способ получения сульфоксидов 1974
  • Бурмистрова Тамара Петровна
  • Хитрик Адольф Александрович
  • Терпиловский Николай Николаевич
  • Петров Анатолий Гурьевич
  • Толстиков Генрих Александрович
  • Джемилев Усеин Меметович
  • Шарипов Айрат Хайдарович
  • Масагутов Рафкат Мазитович
SU524799A1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА ПОЛИМЕРИЗАЦИИ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ 1998
  • Суровцев А.А.
  • Патанова И.М.
  • Карпов О.П.
  • Павлов С.Ю.
  • Беспалов В.П.
  • Федотов В.Б.
  • Борейко Н.П.
  • Галиев Р.Г.
  • Мустафин Х.В.
  • Рязанов Ю.И.
RU2139859C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРЕКИСИ ЭТИЛБЕНЗОЛА 1997
  • Серебряков Б.Р.
  • Путехов А.А.
  • Галиев Р.Г.
  • Белокуров В.А.
  • Васильев И.М.
RU2117005C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРОКСИДА ЭТИЛБЕНЗОЛА 1996
  • Зайцев Н.М.
  • Петухов А.А.
  • Комаров В.А.
  • Сахапов Г.З.
  • Васильев И.М.
  • Белокуров В.А.
  • Нургалиев Н.С.
  • Руссак А.В.
RU2114104C1
КАТАЛИЗАТОР ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Белокуров В.А.
  • Бусыгин В.М.
  • Васильев И.М.
  • Галимзянов Р.М.
  • Зуев В.П.
  • Минуллин А.Ф.
  • Мышкин А.И.
  • Петухов А.А.
  • Ахметов Р.М.
RU2240181C1
СПОСОБ ОЧИСТКИ МАСЛЯНЫХ ФРАКЦИЙ 2003
  • Нигматуллин В.Р.
  • Шарипов В.А.
  • Нигматуллин И.Р.
RU2243986C1

Иллюстрации к изобретению RU 2 144 025 C1

Реферат патента 2000 года СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ

Изобретение относится к способу получения сульфоксидов, которые могут найти применение в качестве экстрагентов редких и благородных металлов, флотореагентов в металлургии или в качестве биологически активных веществ, перспективных для использования в сельском хозяйстве. Описывается способ получения сульфоксидов окислением дистиллятов сернистых нефтей растворами перекисных соединений в присутствии катализатора с последующим выделением целевых продуктов известными приемами. Причем в качестве окислителя и катализатора используют гидроочищенную нефтяную фракцию с температурой кипения 205-360oС, окисленную до содержания перекисных соединений 2,2•10-2 - 20,6•10-2 моль/л. Технический результат - создание взрывобезопасного, более экологичного и простого способа получения сульфоксидов, исключение дефицитного, дорогого и не регенерируемого в настоящее время в промышленных условиях молибденового катализатора. 1 табл.

Формула изобретения RU 2 144 025 C1

Способ получения сульфоксидов окислением дистиллятов сернистых нефтей растворами перекисных соединений в присутствии катализатора с последующим выделением целевого продукта известными приемами, отличающийся тем, что в качестве окислителя и катализатора используют гидроочищенную нефтяную фракцию с температурой кипения 205 - 360oC, окисленную до содержания перекисных соединений 2,2 • 10-2 - 20,6 • 10-2 моль/л.

Документы, цитированные в отчете о поиске Патент 2000 года RU2144025C1

Способ получения сульфоксидов 1974
  • Бурмистрова Тамара Петровна
  • Хитрик Адольф Александрович
  • Терпиловский Николай Николаевич
  • Петров Анатолий Гурьевич
  • Толстиков Генрих Александрович
  • Джемилев Усеин Меметович
  • Шарипов Айрат Хайдарович
  • Масагутов Рафкат Мазитович
SU524799A1
Способ получения сульфоксидов 1971
  • Бурмистрова Т.П.
  • Хитрик А.А.
  • Терпиловский Н.Н.
  • Гальперн Г.Д.
  • Караулова Е.Н.
  • Бардина Т.А.
SU392687A1
Способ получения сульфоксидов 1977
  • Лукьяница Виктор Григорьевич
  • Гальперн Григорий Давыдович
SU632691A1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ 1995
  • Сайфуллин Н.Р.
  • Нигматуллин Р.Г.
  • Масагутов Р.М.
  • Теляшев Г.Г.
  • Шарипов А.Х.
  • Теляшев Р.Г.
RU2100349C1

RU 2 144 025 C1

Авторы

Харлампиди Х.Э.

Чиркунов Э.В.

Мирошкин Н.П.

Мустафин Х.В.

Даты

2000-01-10Публикация

1999-02-02Подача