Изобретение относится к области измерительной техники, в частности, к области измерения электрофизических параметров материалов и может быть использовано для контроля качества полупроводниковых материалов, в частности, полупроводниковых пластин.
Для контроля электрофизических параметров полупроводниковых материалов используют как контактные, так и бесконтактные методы измерения. Контактные методы контроля в сущности являются зондовыми методами. В связи с этим они приводят к загрязнению поверхности анализируемого образца, и в подавляющем большинстве случаев, являются разрушающими методами контроля.
Бесконтактные методы измерения электрической проводимости полупроводниковых пластин, или обратной величины - поверхностного сопротивления пластин, образованы на измерении потерь высокочастотного (ВЧ) электромагнитного поля на вихревых токах, индуцируемых в исследуемой полупроводниковой пластине. С целью измерения этих потерь, создают LC высокодобротный колебательный контур. Конструктивно индуктивность выполняют таким образом, чтобы ее сердечник имел щелевой зазор. Исследуемую полупроводниковую пластину помещают в зазор сердечника индуктивности, в результате чего первичное ВЧ поле индуктивности наводит вихревые токи в полупроводниковом образце, величина которых пропорциональна σh, где σ - удельная проводимость полупроводника, h - толщина образца, а поверхностное сопротивление Rs= (σh)-1. Индуцированные таким образом вихревые токи создают свое ВЧ-поле, которое в соответствии с законом Ленца, уменьшает первичное ВЧ-поле колебательного контура. С радиотехнической точки зрения, потери ВЧ-поля колебательного контура на вихревых токах исследуемой пластины выглядят как появление дополнительной активной составляющей импеданса колебательного контура, в результате которого добротность контура падает. Далее, в зависимости от устройства, тем или иным способом измеряют дополнительную активную составляющую импеданса контура, или изменение его добротности, или уменьшение падения напряжения на нем в силу уменьшения его комплексного сопротивления.
Известно, что для низкоомных образцов предпочтительнее исследуемый образец помещать в ВЧ-поле катушки индуктивности, а для высокоомных, т.е. с низкой электрической проводимостью, использовать схемы с емкостной связью.
Известное техническое решение (SU, авторское свидетельство 164068 G 01 R 31/26, 1964), характеризующее способ и устройство для измерения поверхностного сопротивления полупроводниковых материалов. Устройство содержит X-образный сердечник датчика с обмотками. Обмотки подключены к ВЧ-генератору, напряжение которого модулируют посредством модулятора. На концах X-образного ферритового сердечника симметрично размещены две измерительные и две компенсационные обмотки, каждая пара которых через детектор подключена к электрической схеме сравнения. Значение сигнала измеряют без внесения исследуемой пластины и с внесением исследуемой пластины в ВЧ-поле измерительных обмоток. По измеренным значениям сигналов судят о поверхностном сопротивлении исследуемой пластины. К недостаткам данного технического решения следует отнести недостаточную точность измерения и относительную сложность конструкции.
Известны также способ и устройство для бесконтактного измерения сопротивления полупроводниковых материалов (DE, заявка 3625819, G 01 R 31/26, 1987). Устройство содержит индукционный датчик и блок регистрации, включающий ВЧ-генератор, подключенный к катушке возбуждения датчика, и измеритель информационного сигнала, в качестве которого использован вольтметр. Исследуемую полупроводниковую пластину вводят в индукционный датчик, в котором предварительно сделано первичное ВЧ электромагнитное поле.
Наиболее близким к предлагаемому является способ и устройство для бесконтактного измерения поверхностного сопротивления полупроводниковых пластин (Miller G.L. et al. Contactless measurement of semiconductor conductivity by radio frequency-free carries power absorption. Rev. Sci. Instrum. 1976, vol. 47, N 7, pp. 799-805). Устройство содержит индукционный датчик и блок регистрации информационного сигнала. Этот блок включает: ВЧ-генератор, к которому подключена катушка индукционного датчика, измеритель амплитуды ВЧ-сигнала, схему автоматической регулировки амплитуды, усилитель постоянного тока. Исследуемую полупроводниковую пластину вносят в зазор ферритового сердечника датчика, в котором ВЧ-током катушки создается электромагнитное поле. Переменная магнитная составляющая этого поля вызывает появление вихревых токов Фуко в исследуемой полупроводниковой пластине. Эти вихревые токи порождают свое электромагнитное поле, уменьшающее первичное поле, породившее вихревые токи. В результате этого импеданс LC-клнтура, в котором роль индуктивности играет катушка датчика, изменяется и амплитуда ВЧ-сигнала уменьшается на величину, пропорциональную электрической проводимости σh исследуемого образца. Разность амплитуд первоначального ВЧ-сигнала (датчик без пластины) и уменьшенного ВЧ-сигнала (датчик с внесенной пластиной) и представляет собой информационный сигнал ΔI. Схема автоматической регулировки амплитуды восстанавливает уменьшенный ВЧ-сигнал до прежнего значения для чего добавляет ΔI в катушку датчика.
Проводя измерение эталонных образцов с известным значением σh, строят калибровочную кривую ΔI(σh), благодаря которой в дальнейшем по измеренному значению ΔI определяют электрическую проводимость измеряемой пластины и, следовательно, ее поверхностное сопротивление Rs= (σh)-1.
Одна из основных составляющих погрешности измерения связана с невоспроизводимостью измерения ΔI. Из-за этой погрешности возникает погрешность измерения поверхностного сопротивления измеряемого полупроводника, в результате чего необходимо производить перекалибровку прибора фактически перед каждым новым измерением пластины с неизвестным значением поверхностного сопротивления.
Данное техническое решение может быть принято в качестве ближайшего аналога настоящего изобретения.
Техническая задача, на решение которой направлено настоящее изобретение, состоит в разработке устройства и способа, обладающих более высокой точностью и экспрессивностью при измерении поверхностного сопротивления полупроводниковых материалов.
Технический результат, получаемый при реализации изобретения, состоит в разработке устройства и способа, позволяющих без перекалибровки прибора в течении многократных измерений различных образцов с неизвестным заранее, даже приблизительно значением поверхностного сопротивления производить измерения в широком диапазоне параметра с высокой точностью и экспрессностью.
Устройство содержит индуктивный датчик, блок регистрации информационного сигнала и рамку-держатель исследуемой пластины. Блок регенерации включает ВЧ-генератор, к которому подключена катушка индуктивного датчика, измеритель амплитуды ВЧ-сигнала, схему автоматической регулировки амплитуды, усилитель постоянного тока (фиг. 1). Рамка-держатель исследуемой пластины включает не менее одного контрольного образца с известным значением электрической проводимости (фиг. 2). Эти контрольные образцы на рамке держателя закреплены в плоскости исследуемой пластины и расположены таким образом вдоль осевой линии рамки, что перед первым контрольным образцом, а также между последним контрольным образцом и исследуемой пластиной оставлено пространство с линейными размерами не менее линейных размеров датчика, свободное от объектов с электрической проводимостью. Кроме того, катушка датчика подключена к ВЧ-генератору по схеме с частичным включением, т.е. по схеме с автотрансформаторной связью.
Рамка-держатель при перемещении относительно датчика вдоль своей осевой линии, подводит свободное пространство перед первым контрольным образцом под датчик и производится измерение фонового сигнала ΔIk,o затем рамка-держатель последовательно подводит под датчик каждый из контрольных образцов и последовательно производится замер информационного сигнала ΔIk для каждого из контрольных образцов. Далее измеряют фоновый сигнал ΔIo на втором свободном пространстве, расположенном перед исследуемой пластиной. И наконец, производят измерения информационного сигнала ΔI от исследуемой пластины в одной или нескольких областях этой пластины. В результате нижеприведенных математических операций с измеренными сигналами получают окончательное значение величины с помощью которой по калибровочной функции определяют поверхностное сопротивление исследуемой пластины
В этой формуле вычитание из каждого сигнала фонового значения, измеренного непосредственно перед измерением информационного сигнала, позволяет уменьшить ошибку, связанную с возможным "дрейфом нуля" прибора, т.е. по сути фоновый сигнал дает истинный ноль отсчета для тут же измеряемого информационного сигнала. Функция F(β) = βα позволяет вести поправку на "уход" калибровочной функции со временем, т.е., по существу, на нестабильность измерения информационных сигналов, связанную со многими случайными процессами, изменяющими параметры как радиотехнической системы, так и самих датчиков. В этой поправочной функции ΔI
Значение α лежит в пределах от 0,5 до 1,5 и зависит от того, насколько далеко друг от друга лежат значения Rsиск и Rsконтр и некоторых характеристик устройства.
Таким образом, перед тем как приступить к измерению каждой новой исследуемой пластины, по существу, производят проверку калибровочной функции по одной или нескольким реперным точкам, соответствующим контрольным образцам и с помощью функции F = βα, без перекалибровки прибора, вводят поправку на "уход" координат точек калибровочной функции за время с момента проведения калибровки к моменту текущего цикла измерения.
Следует отметить также, что все величины сигналов, входящие в указанную формулу, есть усредненный результат большого числа измерений (до нескольких тысяч) данного сигнала, выполненных в автоматическом режиме через короткие промежутки времени (например через 100 мкс) в одной области измеряемого образца. Это позволяет свести к минимуму высокочастотные шумы измеряемого сигнала и повысить точность измерения. Кроме того, чтобы избежать наложения случайной погрешности в измерении ΔIk от контрольных образцов на случайную погрешность в измерении ΔI от исследуемой пластины, в поправочной функции F = βα в знаменателе используют усредненное значение от нескольких измерений контрольных образцов в предыдущих циклах измерений.
Заявитель отмечает, что совокупности признаков, введенные им в независимые пункты формулы изобретения, необходимы и достаточны для достижения вышеуказанного технического результата. Признаки, введенные заявителем в зависимые пункты формулы изобретения, развивают и дополняют признаки, введенные в независимые пункты формулы изобретения.
Изобретение иллюстрировано графическим материалом, где на фиг. 1 приведена блок-схема блока регистрации со схемой подключения датчика, на фиг. 2 - конструкция рамки держателя с двумя (в качестве примера) контрольными образцами. На графическом материале введены следующие обозначения: ВЧ-генератор - 1, измеритель амплитуды ВЧ-сигнала - 2, узел автоматической регулировки амплитуды ВЧ-сигнала - 3, усилитель постоянного тока - 4, индукционный датчик - 5, рамка-держатель - 6, контрольные образцы - 7, исследуемая полупроводниковая пластина - 8, области не содержащие электрических проводящих объектов для измерения фонового сигнала - 9.
Изобретение может быть реализовано следующим образом.
В соответствии с описанной выше процедурой в данном цикле измерения последовательно измеряют фоновый сигнал в области, свободной от электрически проводящих объектов перед первым контрольным образом, затем информационные сигналы в области каждого контрольного образца, затем вновь считывают значения фонового сигнала (т.е. значение "нуля") в области, свободной от электрически проводящих объектов, находящейся перед исследуемой пластиной и наконец, производят измерение информационного сигнала в одной или нескольких областях исследуемой пластины. Информационный сигнал в каждой из перечисленных областей, как уже указывалось, связан с величиной электрической проводимости объектов, находящихся в зазоре датчика, за исключением случаев, когда измеряется фоновый сигнал, обусловленный факторами внешнего влияния на радиотехнические цепи и датчики (например, тепловых излучений, сквозняков, вибраций и т.д.). Этот информационный сигнал равен сигналу ΔI, который подает из узла 3 автоматической регулировки амплитуды ВЧ- генератор 1 для восстановления в нем ВЧ-сигнала, уменьшившегося из-за появления вихревых токов Фуко в измеряемых проводящих объектах. В соответствии с приведенным выражением для F, вычисляют значение и по калибровочной функции находят соответствующее значение поверхностного сопротивления исследуемой пластины. Далее, с целью устранить погрешность измерения, связанную с влиянием температуры измерения на поверхностное сопротивление измеряемого объекта, возможно введение температурной поправки на найденное из калибровочной функции значение поверхностного сопротивления.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПЛОСКОГО ИЗДЕЛИЯ И СПОСОБ ЕГО РЕАЛИЗАЦИИ | 1996 |
|
RU2107257C1 |
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ И КОРОБЛЕНИЯ ПЛАСТИН | 1996 |
|
RU2097746C1 |
ОПТИКО-ЭЛЕКТРОННОЕ ЛОКАЦИОННОЕ УСТРОЙСТВО | 2005 |
|
RU2304792C1 |
СПОСОБ ТЕМПЕРАТУРНОЙ КОРРЕКТИРОВКИ ПЕРЕДАЮЩЕЙ ФУНКЦИИ ДАТЧИКА ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ | 2003 |
|
RU2247325C2 |
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО КОНТРОЛЯ ВЛАЖНОСТИ ПИЛОМАТЕРИАЛА | 2006 |
|
RU2333481C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЙОДА В ЙОДСОДЕРЖАЩИХ ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ | 2000 |
|
RU2163377C1 |
ФОТОКОЛОРИМЕТР-РЕФЛЕКТОМЕТР | 2001 |
|
RU2187789C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК КИСЛОРОДА | 2013 |
|
RU2546849C2 |
КАЛИБРОВОЧНЫЙ ЭТАЛОН ДЛЯ ПРОФИЛОМЕТРОВ И СКАНИРУЮЩИХ ЗОНДОВЫХ МИКРОСКОПОВ | 2013 |
|
RU2538029C1 |
ПРЕОБРАЗОВАТЕЛЬ МОЩНОСТИ | 2001 |
|
RU2215365C2 |
Изобретение относится к области измерительной техники, в частности к области измерения электрофизических параметров материалов, и может быть использовано для контроля качества полупроводниковых материалов, в частности полупроводниковых пластин. Устройство содержит индукционный датчик, рамку-держатель с одним или несколькими контрольными образцами и блок измерений. Процедура измерения включает измерение фонового значения сигнала, измерение информационных сигналов от контрольных и исследуемого образцов. По информационным сигналам от контрольных образцов с учетом фонового сигнала рассчитывают поправочную функцию для калибровочной функции и с помощью этих двух функций по информационному сигналу от исследуемого образца определяют его поверхностное сопротивление. Изобретение позволяет без перекалибровки производить измерения в широком диапазоне измеряемого параметра с высокой точностью и экспрессностью. 2 с. и 3 з.п. ф-лы, 2 ил.
где ΔIк- информационный сигнал для контрольного образца,
ΔIк.о- фоновый сигнал от пространства перед контрольным образцом,
- сигнал из калибровочной функции для контрольного образца,
α - показатель степени, равный 0,5 - 1,5.
SU, авторское свидетельство, 164068, G 01 R 31/26, 1964 | |||
DE, заявка, 3625819, G 01 R 31/26, 1987 | |||
MILLER G.L | |||
ET | |||
AL | |||
CONTACTLESS MEASU REMENT OF SEMICONDUCTOR CONDUCTIVITY BY RADIO FREQUENCY-FREE CARRIER POWER ABSORPTION | |||
RV.SCI.INSTRUM | |||
Планшайба для точной расточки лекал и выработок | 1922 |
|
SU1976A1 |
Авторы
Даты
1998-11-10—Публикация
1996-06-06—Подача