СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА Российский патент 1999 года по МПК G01C21/00 

Описание патента на изобретение RU2126136C1

Заявленное изобретение относится к гироскопическому приборостроению и может быть использовано для обеспечения навигации движущихся объектов.

Известен способ выработки навигационных параметров и вертикали места [1] . Этот способ включает измерение составляющих кажущегося ускорения при помощи акселерометров, формирование сигналов управления гироплатформой, отработку сформированного сигнала при помощи гироскопа, выработку навигационных параметров и вертикали места.

Недостатком этого способа является ограниченность точности выработки выходных параметров.

Целью изобретения является повышение точности выработки выходных параметров. Цель достигается тем, что с помощью блока колебаний поворачивают гироплатформу с заданными частотными характеристиками вокруг осей, лежащих в плоскости гироплатформы, или поворачивают на заданные углы по заданной программе, формируют замеры по сигналам разности одноименных параметров, выработанных основной и дополнительной (дополнительными) гироскопическими системами и обрабатывают их в фильтре.

Проиллюстрируем предлагаемый способ на следующем примере.

На чертеже представлена функциональная схема гироскопической системы, где приняты следующие обозначения:
1 - блок управления и выработки выходных параметров,
2 - гироплатформа,
3 - трехстепенной гироскоп,
4, 5 - датчики момента гироскопа,
6, 7 - датчики угла гироскопа,
8 - измеритель составляющей абсолютной угловой скорости,
9, 10, 11 - акселерометры,
12, 13 - следящие двигатели,
14, 15 - датчики углов качек,
16, 17 - блоки управления следящими двигателями,
18 - блок колебаний гироплатформы,
19 - дополнительная гироскопическая система.

Гироскопическая система содержит блок управления и выработки выходных параметров, выполняющий в том числе задачи фильтра 1, гироплатформу 2, на гироплатформе расположен трехстепенной гироскоп 3 с датчиками момента 4, 5 и датчиками угла 6, 7, измеритель составляющей угловой скорости 8, акселерометры 9, 10, 11, по осям карданного подвеса установлены следящие двигатели 12, 13 с датчиками угла качек 14, 15, следящие двигатели управляются блоками управления следящими двигателями 16, 17, блок колебаний гироплатформы 18, дополнительная гироскопическая система 19.

Гироскопическая система функционирует следующим образом. Гироплатформа 2 с помощью следящих двигателей 12, 13 по сигналам рассогласования датчиков угла 6, 7 гироскопа 3 все время удерживается в одной плоскости с кожухом гироскопа 3. По сигналам акселерометров 9, 10, 11 и измерителя составляющей абсолютной угловой скорости гироплатформа может удерживаться в плоскости горизонта или колебаться относительно нее по сигналам блока колебания 18 путем создания необходимых моментов на датчики момента 4, 5 гироскопа 3.

Режим выделения и оценки погрешностей может быть различным: когда две или более гироплатформ колеблются с разными частотными параметрами по каждой оси или, например, одна из двух гироплатформ колеблется, а вторая находится в горизонте, т. е. в классическом невозмущенном состоянии, это значит, что предлагаемый способ применим, в том числе и тогда, когда в качестве опоры для взаимного выделения и оценки инструментальных и динамических погрешностей используется в качестве дополнительной любой тип известной гироскопической инерциальной системы. При этом оцениваются и уменьшаются инструментальные погрешности и динамические погрешности (асимптотическая устойчивость) как основной, так и дополнительной гироскопической системы.

В случае использования двух гироплатформ могут быть различные режимы работ, например, одна гироплатформа колеблется вокруг оси OX, а вокруг оси OY - не колеблется, вторая же гироплатформа колеблется вокруг оси OY, а вокруг оси OX - не колеблется.

В качестве замеров могут быть использованы значения различных одноименных параметров.

Координаты места ϕ и λ, скорость объекта V и курс объекта K автономно определяется, как обычно, по кинематическим уравнениям. Курс объекта и широта места дополнительно вырабатываются по горизонтально составляющим приборного трехгранника с использованием информации от лага. Углы качек вырабатываются в блоке управления и выработки выходных параметров по сигналам датчиков углов качек с учетом заданных углов колебаний платформы θ и ψ.
С объектовым (корабельным) трехгранником Дарбу свяжем правую систему координат XYZ. Ось OZ - вертикальна. С гироплатформой свяжем систему координат X1, Y1, Z1. Система координат X1, Y1, Z1 образуется из XYZ поворотом на угол θ вокруг оси OX - оси бортовой качки и на угол ψ вокруг оси OY1.

Направляющие косинусы между системами координат X1Y1Z1, XYX и будут
lxx1= cosψ
lyx1= sinψsinθ
lzx1= -sinψcosθ
lxy1 = 0
lyy1= cosθ
lzy1= sinθ
lxz1= sinψ
lyz1= -sinθcosψ
lzz1= cosθcosψ
Тогда
ax = ax1lx1x + ay1ly1x + az1lz1x
ay = ay1ly1y + ax1lx1y + az1lz1y
az = az1lz1z + ax1lx1z + ay1ly1z


Ωz1= Ωxlxz1+Ωylyz1+Ωzlzz1


где ax1, ay1, az1 - показания акселерометров,
Ωz1 - показания измерителя угловой скорости приборного трехгранника вокруг оси, перпендикулярной плоскости гироплатформы,
Ωx1; Ωy1 - управляющие сигналы трехстепенного гироскопа.

Углы θ и ψ - заданы. Так, например,
θ = θosinω1t;
ψ = ψosinω2t
где θoo1 и ω2 - параметры модуляции колебаний.

Погрешности вырабатываемых параметров будут модулированы на частотах ω1 и ω2.
Дополнительным вводом одной или более гироплатформ взаимная оценка динамических и инструментальных погрешностей системы может быть осуществлена по замерам
ε1= Ωix

jx
, ε2= Ωiy
jy
, ε3= Ωiz
jz
,
где i и j - номера гироплатформ,
или по разностям других одноименных параметров.

Проиллюстрируем применяемость предлагаемого способа, когда в качестве опоры для выделения и оценки инструментальных и динамических погрешностей используется, в качестве дополнительной другой тип автономной инерциальной системы, например, аналитическая инерциальная система (АИС) или ее модель. В этом случае замерами могут быть, в частности, разности одноименных проекций абсолютной угловой скорости приборного трехгранника Дарбу и АИС или ее модели на оси модели АИС,

где ΩξΩηΩζ - проекции абсолютной угловой скорости трехгранника, связанного с АИС, или с моделью АИС на его оси. Ось Oζ - направлена по оси мира. Абсолютная угловая скорость модели АИС равна нулю.

находятся по значениям ΩxΩyΩz с помощью направляющих косинусов, используя данные широты, долготы, места и курса объекта, определяемых по кинематическим уравнениям.

Источник информации:
[1] В.А. Беленький - Патент РФ N 2000544.

Похожие патенты RU2126136C1

название год авторы номер документа
ГИРОСКОПИЧЕСКАЯ НАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ПОДВИЖНЫХ ОБЪЕКТОВ (ВАРИАНТЫ) 1996
  • Беленький Владимир Аронович
RU2114395C1
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 1998
  • Беленький В.А.
RU2147731C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 1991
  • Беленький Владимир Аронович
RU2046289C1
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 1998
  • Беленький В.А.
RU2138018C1
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 2003
  • Беленький В.А.
RU2247944C2
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 2002
  • Беленький В.А.
RU2206067C1
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 2003
  • Беленький В.А.
RU2247324C1
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ 2001
  • Беленький В.А.
RU2197716C2
СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ 2007
  • Беленький Владимир Аронович
RU2346240C1
ГИРОСКОПИЧЕСКАЯ НАВИГАЦИОННАЯ СИСТЕМА 1998
  • Беленький В.А.
RU2145058C1

Реферат патента 1999 года СПОСОБ ВЫРАБОТКИ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА

Способ может быть использован для навигации морских, воздушных и наземных объектов. Измеряют составляющие кажущегося ускорения. Формируют сигналы управления гироплатформой. С помощью гироскопа осуществляют отработку сформированных сигналов. Поворачивают гироплатформу с заданными частотными характеристиками вокруг осей, лежащих в плоскости гироплатформы, или поворачивают на заданные углы по заданной программе. Вырабатывают навигационные параметры и вертикаль места гироскопическими системами. Замеряют сигналы разности одноименных выработанных параметров. Осуществляют оценку погрешностей систем по произведенным замерам. Повышение точности выработки параметров достигается путем колебаний гироплатформы. 1 ил.

Формула изобретения RU 2 126 136 C1

Способ выработки навигационных параметров и вертикали места, включающий измерение составляющих кажущегося ускорения при помощи акселерометров, формирование сигналов управления гироплатформой, отработку сформированных сигналов управления при помощи гироскопа, выработку навигационных параметров и вертикали места гироскопической системой, отличающийся тем, что поворачивают гироплатформу с заданными частотными характеристиками вокруг осей, лежащих в плоскости гироплатформы, или поворачивают на заданные углы по заданной программе, вырабатывают навигационные параметры и вертикаль места с помощью по крайней мере одной дополнительной гироскопической системы, замеряют сигналы разности одноименных параметров, выработанных гироскопическими системами, и по этим замерам осуществляют оценку погрешностей гироскопических систем.

Документы, цитированные в отчете о поиске Патент 1999 года RU2126136C1

RU 2000544 C, 07.09.93
СПОСОБ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ И ВЕРТИКАЛИ МЕСТА 1991
  • Беленький Владимир Аронович
RU2046289C1
US 5359889 A, 01.11.94
ПОДВЕСНОЙ СВОД МАРТЕНОВСКОЙ ПЕЧИ 0
  • И. П. Герасименко
SU368457A1

RU 2 126 136 C1

Авторы

Беленький В.А.

Даты

1999-02-10Публикация

1997-05-21Подача