Изобретение относится к области генетики, связанной с расширением спектра исходных форм селекции путем искусственного создания новых мутантных форм растений, в частности при проведении трансформации посредством процесса опыления-оплодотворения.
Известен способ генетической трансформации растений, включающий проведение микроинъекции чужеродной ДНК в протопласты растений [1].
Известен также способ генетической трансформации растений, согласно которому пыльцу растений инкубируют в присутствии ДНК плазмиды, содержащей ген устойчивости к антибиотикам, в частности к канамицину. Методом электропорации вводят плазмидную ДНК в пыльцевые зерна растений, затем растение опыляют и селекцию трансформантов в полученном потомстве проводят по устойчивости к канамицину [2].
Однако известные способы неприемлемы для растений, у которых жизнеспособность пыльцы в значительной степени зависит от времени хранения, например, у злаковых.
Наиболее близким к предлагаемому, является способ, заключающийся в том, что обработка рыльца пестика растений производится смесью пыльцы и экзогенной ДНК в растворе сахарозы, использование вектора на основе TI-плазмид, содержащих маркерный ген устойчивости к антибиотикам [3]. При этом в способе, взятом за прототип, плазмиду смешивают с раствором сахарозы, борной кислотой и Ca(NO3)2, причем смесь сразу же наносят на рыльце пестика и немедленно производят опыление, а отбор трансформированных растений производят путем проращивания на среде Кноппа, г/л: Ca(NO3)2 - 0,8; KH2PO4 - 0,2; MgO4•7H2O - 0,2; KNO3 - 0,2; FePO4 - 0,1, содержащей канамицин в концентрации 250-400 мкг/мл. При опылении в данном способе используются среды следующего состава: 0,4-0,5М сахарозы; 0,017-0,020% борной кислоты; 0,038-0,042% Ca(NO3)2; pH 5,5-5,8; 40-100 мкг/мл плазмидной ДНК (например, PGV1501), содержащей ген устойчивости к канамицину. Используя способ, взятый за прототип, авторам удавалось получать частоту трансформантов на кукурузе около 0,6%, и 1,45% трансформантов на томате "Факел".
Недостаток указанного способа, принятого за прототип, заключается в низкой частоте получаемых трансформантов.
Задача, на решение которой направлено заявляемое изобретение, заключается в создании универсального способа трансформации растений, посредством процесса опыления-оплодотворения, имеющего высокую частоту трансформантов.
Технический результат, который может быть получен от использования изобретения, заключается в значительном повышении эффективности трансформации посредством процесса опыления-оплодотворения, получения при этом широкого спектра наследственно измененных форм растений для нужд селекции.
Указанный технический результат достигается тем, что в способе трансформации растений, включающем смешивание экзогенной ДНК с питательной средой, представляющей собой раствор 0,4-0,5М сахарозы, 0,017-0,020% борной кислоты, 0,038-0,042% Ca(NO3)2, pH 5,5-5,8, нанесение полученной смеси на рыльце пестика растения и немедленное опыление-оплодотворение, перед нанесением полученной смеси на рыльце пестика, к ней добавляют молекулы-интеркаляторы акридина оранжевого, до конечной концентрации 5•10-5 М, или бромистого этидия, до конечной концентрации 10-5 М. Смесь, содержащую экзогенную ДНК и молекулы-интеркаляторы, выдерживают в течение 1-2 минут и наносят на рыльце пестика растения, после чего немедленного следует опыление. Отбор трансформированных растений производят путем проращивания на среде Кнопа, содержащей антибиотик, например канамицин, в концентрации 100-400 мкг/л.
В результате проведенных экспериментов было обнаружено, что с увеличением количества пыльца в питательной среде (ПС) резко возрастает нуклеазная активность, выражающаяся в заметно более скорой деградации плазмидной или линейной форм ДНК, используемых в качестве субстратов. Результаты получены для пыльцы разных сортов томата и кукурузы. Выявлено, что при добавлении к ПС молекул-интеркаляторов, эффект деградации экзогенной ДНК нуклеазами пыльцы резко снижается. Концентрация интеркалятора в ПС должна быть малой, не ингибирующей заметно прорастание пыльцевых зерен. Для каждого вида интеркалятора и сорта растений она легко определяется экспериментально. Например, установлено, что снижение процента прорастания пыльцы кукурузы и томата не превышает 30%, если в ПС содержится интеркалятор акридин оранжевый (АО) в концентрации 5•10-5 М или этидий бромистый (EtBr) в концентрации 10-5 М. При проведении принудительного опыления растений пыльцой, выдержанной в ПС с указанными концентрациями интеркаляторов, зафиксировано нормальное развитие завязи и далее вегетирующего растения. Исследованиями установлено, что при использовании АО и EtBr, комплексообразование ДНК-интеркалятор происходит в течение 1-2 минут. Однако комплексообразование ДНК с интеркаляторами АО и EtBr осуществляется водородными связями, и в дальнейшем, при попадании комплексов ДНК-интеркалятор в пыльцевые зерна, по мере активизации генетического аппарата, молекулы интеркалятора отторгаются от ДНК и удаляются. Внесение в ПС молекул-интеркаляторов приводит к резкому снижению нуклеазной активности прорастающей пыльцы и сохранение экзогенной ДНК помещенной в ПС с прорастающей пыльцой, от быстрой деградации. Проводилось выдерживание плазмидной и линейной форм ДНК в ПС с прорастающими пыльцевыми зернами. При этом в одном варианте (ПС+EtBr) в ПС добавлялся интеркалятор в малой концентрации, не ингибирующей прорастание. В другом варианте (ПС), ПС была чистой. В результате в ПС с добавленным интеркалятором время деградации всех видов ДНК нуклеазами пыльцы резко возрастает.
Деградация плазмиды pBR-322, выдержанной в ПС с прорастающей пыльцой томата "Факел" в отсутствие и в присутствии EtBr в зависимости от времени выдержки t (мин) представлена в таблице.
Молекулы-интеркаляторы, имеющие химические сродство к ДНК, встраиваются в молекулу ДНК. Встраивание в ДНК сопровождается изменением пространственной конфигурации сахарофосфатного остова ДНК: при этом меняется степень спирализации нитей ДНК, расстояние между основаниями ДНК и другие параметры. В целом, встраивание интеркалятора в молекулу ДНК приводило к нарушению фермент-субстратных комплексов и ослаблению стерического взаимодействия активных центров нуклеаз пыльцы с фрагментами молекулы ДНК и позволило довести время сохранения суперспирализованной формы плазмиды, в случае АО, до 20 минут, а линейной - до 30 минут. При отсутствии интеркалятора полная 100% деградация всех форм ДНК наблюдалась уже в течение 8-9 минут выдержки. Еще большее время устойчивости к деградированию было достигнуто в том случае, если экзогенная ДНК выдерживалась предварительно в растворе с интеркалятором и добавлялась к прорастающей пыльце уже в чистую ПС. При этом время сохранения суперспирализованной формы плазмиды достигло 35 минут, а линейной - до 50 минут.
Методика применения предлагаемого способа трансформации растений, включает в себя этапы:
1. Добавление к питательной среде (ПС), представляющей собой раствор 0,4-0,5М сахарозы, 0,017-0,20% борной кислоты, 0,038-0,042% Ca(NO3)2, pH 5,5-5,8 экзогенной ДНК, например плазмид серии PGV, содержащих маркерный ген устойчивости к антибиотикам (канамицину), до конечной концентрации 40-100 мкг/мл.
2. Добавление к смеси ПС с эзогенной ДНК акридина оранжевого до конечной концентрации 5•10-5 М или бромистого этидия до концентрации 10-5 М.
3. Выдерживание смеси ПС с экзогенной ДНК и молекулами-интеркаляторами в течение 1-2 минут.
4. Нанесение смеси на рыльце пестика и немедленное опыление-оплодотворение.
5. Отбор трансформированных растений на среде Кнопа, г/л: Ca(NO3)2 - 0,8; KH2PO4 - 0,2; MgO4•7H2O - 0,2; KNO3 - 0,2; FePO4 -0,1, содержащей канамицин в концентрации 100-400 мкг/мл.
Пример. В среду, содержащую 0,45М сахарозы, 0,017% борной кислоты, 0,038% Ca(NO3)2, pH 5,5-5,8, вносят плазмидную ДНК (PGV1501), содержащую ген устойчивости к канамицину до концентрации 80 мкг/мл. К смеси добавляют акридин оранжевый до концентрации 5•10-5 М и выдерживают смесь в течение 1-2 минут. После чего смесь наносят на рыльце пестика томата и немедленно опыляют. Созревшие семена проращивают на среде Кнопа с канамицином, в концентрации 100 мкг/мл. При использовании сорта томата "Факел", частота трансформации составляет 2,5%.
В прототипе на один ген частота трансформации составляет 1,45%, т.е., полученная в результате использования предлагаемого способа частота трансформации в 1,7 раза превосходит полученную в известном способе. Анализ трансформантов методом блотгибридизации по Саузерну показал, что ген устойчивости к канамицину встроился в растительный геном.
Таким образом, предложен способ трансформации растений посредством опыления-оплодотворения, в котором осуществляется сохранение в течение определенного времени экзогенного генетического материала, находящегося в контакте с прорастающей пыльцой.
Применение заявленного способа в народном хозяйстве не представляет значительных трудностей, не связано с большими затратами на его осуществление и может иметь большое значение для целенаправленной трансформации генома растений.
Источники информации
1. Appl. Microbiol. Biotechnol. - 1985, v. 21, p. 336.
2. Biotechnology and Ecology of Pollen. - 1986, pp. 59-76.
3. Авторское свидетельство СССР N 1708849 A1, C 12 N 15/87, 1992.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТРАНСФОРМАЦИИ РАСТЕНИЙ | 1997 |
|
RU2123781C1 |
Способ генетической трансформации растений | 1989 |
|
SU1708849A1 |
СПОСОБ ТРАНСФОРМАЦИИ РАЗМНОЖАЮЩИХСЯ ПУТЕМ ОПЫЛЕНИЯ РАСТЕНИЙ | 1988 |
|
RU2054482C1 |
СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ РАСТЕНИЙ СОРГО | 2002 |
|
RU2229793C1 |
ПОЛИНУКЛЕОТИД, СПОСОБЫ ПОЛУЧЕНИЯ РАСТЕНИЙ, ГЕНОМ РАСТЕНИЯ, КЛЕТКИ, ПЛОДЫ, СЕМЕНА, СПОСОБЫ ПОЛУЧЕНИЯ СЕМЯН, ПРИМЕНЕНИЯ ОЛИГОНУКЛЕОТИДА, ПЛАЗМИДА, МИКРООРГАНИЗМ | 1992 |
|
RU2170255C2 |
СПОСОБ СОХРАНЕНИЯ ЭФФЕКТА СТИМУЛЯЦИИ ОБЛУЧЕННЫХ СЕМЯН | 1997 |
|
RU2112346C1 |
СПОСОБ ОТБОРА ТРАНСФОРМАНТОВ ТОМАТА | 1992 |
|
RU2037289C1 |
СПОСОБ ОПРЕСНЕНИЯ ВОДЫ | 1997 |
|
RU2120415C1 |
МОЛЕКУЛА ДНК, КОДИРУЮЩАЯ БЕЛОК, ОБЛАДАЮЩИЙ АКТИВНОСТЬЮ N-АЦЕТИЛ-ФОСФИНОТРИЦИН-ДЕАЦЕТИЛАЗЫ, И СПОСОБ ПОЛУЧЕНИЯ РАСТЕНИЙ С ИНДУЦИРУЕМО-РАЗРУШАЕМЫМИ ЧАСТЯМИ | 1997 |
|
RU2205219C2 |
СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ ОДНОДОЛЬНЫХ РАСТЕНИЙ | 2007 |
|
RU2351121C1 |
Изобретение относится к области генетики, связанной с расширением спектра исходных форм селекции путем искусственного создания новых мутантных форм растений. Технический результат изобретения заключается в упрощении способа, повышении эффективности трансформации посредством процесса опыления -оплодотворения и получении широкого спектра наследственно измененных форм растений для нужд селекции. К питательной смеси с экзогенной ДНК добавляют акридин оранжевый или бромистый этидий. Смесь выдерживают и наносят на рыльце пестика. Бромистый этидий добавляют до конечной концентрации 10-5 М. Акридин оранжевый добавляют до конечной концентрации 5•10-5 м. Выдержку осуществляют в течение 1-2 мин. 1 з. п. ф-лы, 1 табл.
Способ генетической трансформации растений | 1989 |
|
SU1708849A1 |
Авторы
Даты
1999-04-10—Публикация
1996-10-10—Подача