КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ И СПОСОБ ДИМЕРИЗАЦИИ ОЛЕФИНОВ Российский патент 1999 года по МПК B01J31/24 C07C2/36 

Описание патента на изобретение RU2133641C1

Настоящее изобретение относится к каталитической композиции и к катилитическому способу димеризации, содимеризации и олигомеризации олефинов, в частности пропилена, с использованием каталитической системы, причем композиция получается в результате растворения никелевого соединения в смеси с фосфином или в виде его комплекса с фосфином в жидкой смеси ионного характера четвертичного аммонийгалогенида и/или четвертичного фосфонийгалогенида, галогенида алюминия, ароматического углеводорода и необязательно алкилалюминиевого соединения.

В патенте Франции 2611700 описано использование жидкостей ионного характера, образованных галогенидами алюминия и четвертичными аммонийгалогенидами, в качестве растворителей металлоорганических комплексов на основе никеля для проведения каталитической димеризации олефинов.

Использование таких сред, не смешивающихся c алифатическими углеводородами, в особенности с продуктами, происходящими от димеризации олефинов, позволяет осуществлять наилучшее использование гомогенных катализаторов. В патенте США 5104840 описана жидкая композиция ионного характера, получающаяся в результате контактирования четвертичных аммоний- и/или фосфонийгалогенидов, алюминийалкилгалогенида, в случае необходимости тригалогенида алюминия, углеводорода и органического производного алюминия.

В этом же патенте описывается использование этих сред в качестве растворителей комплексов переходных металлов, в частности комплексов никеля, не содержащих никель-углеродной связи, которые превращают в катализаторы олигомеризации олефинов. В дальнейшем эти среды будут называться "расплавленные соли", так как они жидкие при умеренной температуре.

Дальнейшее исследование показало, что наиболее активные и наиболее стабильные катализаторы на основе никеля получают в "расплавленных солях", образованных одним молярным эквивалентом аммонийгалогенида и/или фосфонийгалогенида с одним или более эквивалентом тригалогенида алюминия и, возможно, с некоторым количеством алкилалюминийдигалогенида. Этот состав оказывается особенно интересным, так как никелевые комплексы, которые в ней растворены, обладают повышенной и постоянной каталитической активностью.

Однако оказалось, что в таких условиях "фосфиновый эффект", который описывается G. Wilke и др. в Ind. Eng, Chem. 1970, 62, N 12, c. 34 в патенте Великобритании 1058680 и который выражается во влиянии заместителей, которые содержит атом фосфора, на образование цепи из молекул пропилена во время каталитической за счет никеля димеризации, быстро исчезает с течением времени. Это необъясненное явление имеет вредные последствия в том смысле, что не позволяет добиться селективности процесса.

В настоящее время найдено, что добавление ароматического углеводорода к "расплавленной соли" позволяет избежать этого недостатка и приводит к катализаторам с высокой и стабильной активностью, селективность которых по наиболее разветвленным изомером значительна.

Более конкретно, объектом изобретения является каталитическая композиция, включающая по крайней мере одно соединение никеля в виде смеси или в виде комплекса по крайней мере с одним третичным фосфином, растворенное по крайней мере частично в неводной среде ионного характера, получающейся в результате контактирования по крайней мере одного галогенида алюминия (B) по крайней мере с одним четвертичным аммонийгалогенидом и/или по крайней мере с одним четвертичным фосфонийгалогенидом (A), по крайней мере с одним ароматическим углеводородом (C) и с органическим производным алюминия формулы AlRxX3-x, где R означает линейный или разветвленный C2-C8-алкил, X означает хлор или бром и x = 1,2 или 3.

Другим объектом изобретения является способ димеризации, содимеризации или олигомеризации по крайней мере одного олефина, в котором олефин вводится в контакт по крайней мере с одним соединением никеля в виде смеси или в виде комплекса по крайней мере с одним третичным фосфином, причем вышеуказанное соединение растворено по крайней мере частично в неводной среде ионного характера, полученной в результате контактирования по крайней мере одного галогенида алюминия по крайней мере с одним четвертичным аммонийгалогенидом и/или четвертичным фосфонийгалогенидом, по крайней мере с одним ароматическим углеводородом и с органическим производным алюминия.

Среда "расплавленных солей", следовательно, состоит из:
а) четвертичных аммоний- и/или фосфонийгалогенидов, преимущественно четвертичных аммоний- и/или фосфонийхлоридов и/или -бромидов (обозначаемых как продукт A);
б) галогенида алюминия и предпочтительно хлорида, бромида алюминия (обозначаемого как продукт B);
в) простого конденсированного или замещенного ароматического углеводорода (обозначаемого как продукт C);
г) органического производного алюминия (обозначаемого как продукт Д).

Четвертичные аммонийгалогениды и четвертичные фосфонийгалогениды, используемые в рамках изобретения, предпочтительно отвечают общим формулам NR1 R2 R3 R4 X и P R1 R2 R3 R4 X, где X обозначает C1 или Br; R1, R2, R3 и R4, одинаковые или разные, каждый обозначает водород; алкильную группу, алифатическую (насыщенную или ненасыщенную) или ароматическую, содержащую 1 - 12 атомов углерода. Четвертичные аммоний- и/ или фосфонийгалогениды также могут быть получены из гетероциклов, включающий 1, 2 или 3 атома азота и/или фосфора. В качестве примеров можно назвать тетрабутилфосфoнийхлорид, N-бутилпиридинийхлорид, этилпиридинийбромид, 3-бутил-1-метил-имидазолийхлорид, диэтилпиразолийхлорид, пиридинийхлоргидрат, триметилфениламмонийхлорид.

Ароматическими углеводородами согласно изобретению являются бензол и его замещенные общей формулы C6HxR6-x, причем R обозначает алкил, циклоалкил, арил, алкиларил, такой как C6H5CH2-, и "x" имеет значения 1 - 5; нафталин и его замещенные общей формулы C10HxR8-x, причем R имеет вышеуказанное значение и "x" обозначает 0 - 7; антрацен и его производные общей формулы C14HxR8-x, где R имеет вышеуказанное значение, "x" = 0 - 7.

Их можно использовать индивидуально или в виде смеси. В качестве примеров можно назвать бензол, толуол, ксилолы, дурол и изодурол, пентаметилбензол, гексаметилбензол, α-метилнафталин, 2,6-диметилантрацен.

Органические производные алюминия согласно изобретению отвечают общей формуле A1RxX3-x, в которой R обозначает линейный или разветвленный алкильный радикал с 2 - 8 C-атомами; X - обозначает хлор или бром и "x" имеет значение, равное 1,2 или 3. В качестве примеров можно использовать этилалюминийдихлорид, этиламинийсесквихлорид, изобутилалюминийсесквихлорид, изобутилалюминийдихлорид и диэтилалюминийхлорид.

Компоненты "расплавленных солей" как определенные выше используются в молярных соотношениях: A:B, равных от 1:0,5 до 1:3, предпочтительно от 1:1 до 1: 2; B:C, равных от 1:1 до 1:100, предпочтительно от 1:1 до 1:10; B:Д, равных от 1:0 до 1:10, предпочтительно от 1:0,01 до 1:5. Однако необходимо, чтобы компоненты и их соотношения были такими, чтобы смесь была жидкой при температуре, при которой вводится никелевое соединение и фосфин, хотя каталитическая реакция димеризации может осуществляться при температуре ниже или выше температуры плавления каталитической композиции.

Чтобы ароматический углеводород распределился между полярной фазой и углеводородной фазой, которая состоит из димеров и олигомеров, этот ароматический углеводород необходимо добавлять непрерывно, чтобы его концентрация в полярной фазе оставалась в вышеуказанных пределах.

Соединения, входящие в композицию согласно изобретению, могут смешиваться в любом порядке. Смешение можно осуществлять простым контактированием с последующим перемешиванием до образования гомогенной жидкости. Это смешение можно осуществлять вне реактора димеризации или предпочтительно в этом реакторе.

Никелевыми соединениями согласно изобретению являются хлорид, бромид, сульфат, карбоксилаты, например 2-этил-гексаноат, феноляты, ацетилацетонат никеля, в смеси с третичным фосфином или их комплексы с третичным фосфином. Также можно использовать никельорганические комплексы, содержащие или не содержащие фосфинов.

Фосфины согласно изобретению отвечают общим формулам P R1 R2 R3 и R1 R2 P - R' - P R1 R2, в которых R1, R2 и R3, одинаковые или разные, представляют собой алкильные, циклоалкильные, арильные или аралкильные радикалы, содержащие 1 - 10 атомов углерода, и R' обозначает двухвалентный алифатический остаток с 1 - 6 атомами углерода. В качестве примеров можно назвать триизопропилфосфин, трициклогексилфосфин, трибензилфосфин, дициклогексилфенилфосфин тетрациклогексилметилдифосфин, диизопропил - трет.-бутилфосфин.

В качестве примеров никелевых соединений, используемых согласно изобретению, можно назвать комплексы NiCl2•2P (изопропил)3; NiCl2•2P (циклогексил)3; NiCl2•2 пиридин в смеси с одним эквивалентом триизопропилфосфина; хлорид никеля в смеси с одним эквивалентом триизопропилфосфина; ацетат никеля в смеси с одним эквивалентом трициклогексилфосфина; паллилникельтриизопропилфосфинхлорид.

Олефинами, которые могут быть димеризованы или олигомеризованы с помощью каталитических композиций согласно изобретению, являются этилен, пропилен, н-бутены и н-пентены, индивидуально или в виде смеси, чистые или разбавленные алканом, такие, которые содержатся во "фракциях при перегонке", происходящих из способов переработки нефти, например, каталитического крекинга или парофазного крекинга.

Каталитическую реакцию димеризации олефинов можно осуществлять в закрытой системе, полуоткрытой системе или непрерывно в одну или несколько стадий реакции. Интенсивное перемешивание должно обеспечивать хороший контакт между реагентом или реагентами и каталитической композицией. Температура реакции может составлять от -40 до +70oC, предпочтительно от -20 до +50oC. Можно работать выше или ниже температуры плавления каталитической композиции, причем состояние твердой дисперсии не препятствует хорошему протеканию реакции. Выделяемое при реакции тепло может быть удалено любыми известными специалисту способами.

Давление может составлять от 0,1 до 20 МПа, предпочтительно от атмосферного давления до 5 МПа. Продукты реакции и непрореагировавший реагент или непрореагировавшие реагенты могут быть отделены от каталитической системы простой декантацией, затем подвергнуты фракционированию.

Следующие примеры иллюстрируют изобретение, не ограничивая его объема охраны.

Пример 1.

Приготовление ионного растворителя.

При комнатной температуре смешивают 17,5 г (0,1 моль) бутилметилимидазолийхлорида, 16,3 г (0,122 моль) сублимированного хлорида алюминия, 0,26 г (0,002 моль) этилалюминийдихлорида и 4,02 г (0,03 моль) изодурола. Таким образом, получают светло-желтую жидкость.

Димеризация пропилена.

Стеклянный реактор емкостью 100 мл, снабженный зондом для измерения температуры, магнитным стержнем для обеспечения хорошего перемешивания и двойной рубашкой, в которой циркулирует охлаждающая жидкость, освобождают от воздуха и влаги, и поддерживают при атмосферном давлении пропилена 99%-ной чистоты. Туда вводят 45 мг (0,1 ммоль) комплекса NiCl2•2P (изопропил)3, затем температуру понижают до -15oC и с помощью шприца инжектируют 3,5 мл вышеполученной жидкой композиции и 7 мл гептана.

Начинают перемешивать и немедленно наблюдают поглощение пропилена. Когда реактор на 3/4 заполняется жидкостью, перемешивание прекращают, оставляют отстаиваться "расплавленную соль" и отбирают большую часть углеводородной фазы. Операцию возобновляют 7 раз. К этому моменту вводят в целом 430 г пропилена.

Анализ различных фракций показал, что они состоят на 85% из димеров, на 12% из тримеров и на 3% из тетрамеров. Состав димеров, который практически идентичен во всех фракциях, включает 81% 2,3-диметилбутенов, 2% н-гексенов и 17% 2-метил-пентенов. Это количество диметилбутенов выше, чем таковое, которое описано G.Wilke.

Пример 1' (сравнительный).

Приготовление ионного растворителя.

Готовят ионный растворитель в условиях, идентичных таковым предыдущего примера, за исключением того, что не добавляют ароматический углеводород. Жидкость в этом случае практически бесцветная.

Димеризация пропилена.

Поступают как в предыдущем примере. Первая углеводородная фракция состоит из 83% димеров, 14% тримеров и 3% тетрамeров: димеры содержат 83% 2,3-диметил-бутенов, 2%-н-гексенов и 15% 2-метил-пентенов. Димеры седьмой фракции, которые всегда представляют 85% продуктов, содержат не более чем 11% 2,3-диметил-бутенов наряду с 16% н-гексенов и 63% 2-метил-пентенов. Состав последней фракции особенно обеднен диметил-бутенами.

Пример 2.

Димеризация пропилена.

Поступают как в примере 1, за исключением того, что вместо 45 мг комплекса NiCl2•2P (изопропил)3 вводят 69 мг (0,1 ммоль) комплекса NiCl2•2P (циклогексил)3. Осуществляют три отбора, что соответствует 210 г введенного пропилена. Три фракции состоят из 78% димеров, 18% тримеров и 4% тетрамеров. Димеры включают 84% 2,3-диметил-бутенов, 1% н-гексенов и 15% 2-метил-пентенов. Димеры особенно обогащены диметил-бутенами.

Пример 3.

Приготовление ионного растворителя.

Поступают как в примере 1, за исключением того, что изодурол заменяют на 4,26 г α-метилнафталина.

Димеризация пропилена.

Поступают как в примере 1, за исключением того, что используют "расплавленную соль", приготовленную для этой цели, и вводят 50 мг (0,12 ммоль) комплекса NiCl2• 2P (изопропил)3. Осуществляют 3 отбора. Первая фракция состоит из 78% димеров, которые включают 84% 2,3-диметил-бутенов. Последняя фракция состоит из 88% димеров, которые включают 65% 2,3-диметил-бутенов.

Пример 4.

Приготовление ионного растворителя.

Поступают как в примере 1, за исключением того, что изодурол заменяют на 4,4 г пентаметилбензола.

Димеризация пропилена.

Поступают как в примере 1, за исключением того, что используют "расплавленную соль", приготовленную для этой цели, и вводят 50 мг (0,12 ммоль) комплекса NiCl2•2P (изопропил)3. Осуществляют 6 отборов, соответствующих 370 г введенного пропилена. Первая фракция содержит 79% димеров, которые включают 83% 2,3-диметил-бутенов. Последняя фракция содержит 84% димеров, которые включают 75% 2,3-диметил-бутенов.

Пример 5.

Этот пример иллюстрирует случай, в котором ароматический углеводород, в данном случае толуол, распределяется между полярной фазой и фазой, образованной олигомерами. Его добавляют после каждого отбора.

Приготовление ионного растворителя.

Поступают как в примере 1, за исключением того, что изодурол заменяют на 2,46 г толуола.

Димеризация пропилена.

Поступают как в примере 1, за исключением того, что используют приготовленную для этой цели "расплавленную соль", и вводят 50 мг (0,12 ммоль) комплекса NiCl2•2P (изопропил)3. Осуществляют 6 отборов, соответствующих 370 г введенного пропилена. После каждого отбора добавляют 0,2 мл толуола. Первая фракция содержит 78% димеров, которые включают 83% 2,3-диметил-бутенов. Последняя фракция содержит 78% димеров, которые включают 83% 2,3-диметил-бутенов. В идентичном опыте, в котором после каждого отбора не добавляют толуол, последняя фракция содержит не более чем 10% диметилбутенов.

Разумеется, что при непрерывно функционирующим способе толуол будет добавляться непрерывно или периодически в перемешиваемую смесь каталитической композиции с продуктами реакции.

Похожие патенты RU2133641C1

название год авторы номер документа
ДЕЗАЛЮМИНИРОВАННЫЙ ЦЕОЛИТ NU-86, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), КАТАЛИЗАТОР НА ЕГО ОСНОВЕ И ЕГО ИСПОЛЬЗОВАНИЕ ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ 1997
  • Беназзи Эрик
  • Шуто Николя
  • Коффрье Эрве
RU2184610C2
КАТАЛИЗАТОРЫ СЕЛЕКТИВНОЙ ГИДРОГЕНИЗАЦИИ, СОДЕРЖАЩИЕ ПАЛЛАДИЙ И, ПО МЕНЬШЕЙ МЕРЕ, ОДИН МЕТАЛЛ ГРУППЫ IVА 1997
  • Дидиллон Блэз
  • Камерон Шарль
  • Готро Кристоф
RU2192306C2
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДНОЙ ЗАГРУЗКИ 2003
  • Дюплан Жан-Люк
  • Лакомб Сильви
  • Бейль Жером
  • Купар Винсен
RU2294916C2
СПОСОБ МНОГОСТАДИЙНОЙ КОНВЕРСИИ ЗАГРУЗКИ, СОДЕРЖАЩЕЙ ОЛЕФИНЫ С ЧЕТЫРЬМЯ, ПЯТЬЮ ИЛИ БОЛЕЕ АТОМАМИ УГЛЕРОДА, С ЦЕЛЬЮ ПОЛУЧЕНИЯ ПРОПИЛЕНА (ВАРИАНТЫ) 2003
  • Дюплан Жан-Люк
  • Бейль Жером
  • Лакомб Сильви
  • Томазо Сесиль
RU2299191C2
СПОСОБ КАТАЛИТИЧЕСКОГО ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ В АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ НА КАТАЛИЗАТОРЕ, СОДЕРЖАЩЕМ КРЕМНИЙ 1996
  • Фабио Аларио
  • Жан-Мари Дев
  • Патрик Эзон
RU2157826C2
СПОСОБ КАТАЛИТИЧЕСКОГО ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ В АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ С ИСПОЛЬЗОВАНИЕМ КАТАЛИЗАТОРА 1996
  • Фабио Аларио
  • Жан-Мари Дев
  • Патрик Эзан
RU2161638C2
КАТАЛИЗАТОР ДЛЯ КАТАЛИТИЧЕСКОГО РИФОРМИНГА УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1996
  • Фабио Аларио
  • Жан-Мари Дев
  • Патрик Эзан
RU2160635C2
СПОСОБ СНИЖЕНИЯ СОДЕРЖАНИЯ БЕНЗОЛА В БЕНЗИНОВЫХ ФРАКЦИЯХ 1994
  • Кристина Травер
  • Филип Курти
  • Патрик Сарразен
RU2130962C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРОВ ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ 1994
  • Фабьенн Ле Пельтье
  • Сильви Робер
  • Жан-Поль Буатьо
  • Блэз Дидийон
  • Оливье Клоз
RU2128551C1
КАТАЛИЗАТОР ДЛЯ ИСПОЛЬЗОВАНИЯ В ПРОЦЕССАХ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1996
  • Фабио Аларио
  • Жан-Мари Дев
  • Патрик Эзан
RU2162738C2

Реферат патента 1999 года КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ И СПОСОБ ДИМЕРИЗАЦИИ ОЛЕФИНОВ

Изобретение относится к каталитической композиции, включающей по крайней мере одно соединение никеля в виде смеси или в виде комплекса по крайней мере с одним третичным фосфином, растворенное, по крайней мере частично, в неводной среде ионного характера, полученной в результате контактирования по крайней мере одного галогенида алюминия (В) с по крайней мере одним четвертичным аммонием (А), по крайней мере с одним углеводородом (С) и с органическим производным алюминия (Д), отличающийся тем, что углеводородом (С) является ароматический углеводород, а в качестве органического производного алюминия (Д) используют соединение общей формулы AlRxX3-x, где R обозначает линейный или разветвленный алкильный радикал с 2-8 атомами углерода; X обозначает хлор или бpoм; x = 1,2 или 3. Изобретение также относится к способу димеризации, содимеризации и олигомеризации олефинов с помощью этой композиции. Технический результат - катализаторы с высокой и стабильной активностью, селективность которых по наиболее разветвленным изомерам значительна. 2 c. и 13 з.п. ф-лы.

Формула изобретения RU 2 133 641 C1

1. Каталитическая композиция, включающая по крайней мере одно соединение никеля в виде смеси или в виде комплекса по крайней мере с одним третичным фосфином, растворенное, по крайней мере частично, в неводной среде ионного характера, полученной в результате контактирования по крайней мере одного галогенида алюминия (В) по крайней мере с одним четвертичным аммонийгалогенидом (А), по крайней мере с одним углеводородом (С) и с органическим производным алюминия (Д), отличающаяся тем, что углеводородом (С) является ароматический углеводород, а в качестве органического производного алюминия (Д) используют соединение общей формулы
AlRxX3-x,
где R обозначает линейный или разветвленный алкильный радикал с 2 - 8 атомами углерода;
X обозначает хлор или бром;
x = 1, 2 или 3.
2. Каталитическая композиция по п.1, отличающаяся тем, что четвертичный аммонийгаллогенид выбирается в группе, включающей N-бутилпиридинийхлорид, этилпиридинийбромид, 3-бутил-1-метил-имидазолийхлорид, диэтил-пиразолийхлорид и пиридинийхлоргидрат. 3. Каталитическая композиция по любому из пп.1 и 2, отличающаяся тем, что галогенидом алюминия является хлорид алюминия. 4. Каталитическая композиция по любому из пп.1 - 3, отличающаяся тем, что ароматический углеводород выбирается в группе, включающей бензол, замещенные бензолы общей формулы
C6HxR6-x,
где R обозначает алкильный, циклоалкильный, арильный, алкиларильный радикал;
x = 1 - 5;
нафталин, замещенные нафталина общей формулы
C10HxR8-x,
где R имеет вышеуказанное значение;
x = 0 - 7;
антрацен, замещенные антрацена общей формулы
C14HxR8-x,
где R имеет вышеуказанное значение;
x = 0 - 7.
5. Каталитическая композиция по п.4, отличающаяся тем, что ароматический углеводород выбирается в группе, включающей толуол, ксилолы, дурол, изодурол, пентаметилбензол, α-метилнафталин, 2,6-диметил-антрацен. 6. Каталитическая композиция по п.1, отличающаяся тем, что органическое производное алюминия выбирается в группе, включающей этилалюминийдихлорид, изобутилалюминийдихлорид, диэтилалюминийхлорид, этилалюминийсесквихлорид, диизобутилалюминийсесквихлорид. 7. Каталитическая композиция по любому из пп.1 - 6, отличающаяся тем, что молярное соотношение А : В составляет 1 : 0,5 - 1 : 3, молярное соотношение В : С составляет 1 : 1 - 1 : 100. 8. Каталитическая композиция по любому из пп.1 - 7, отличающаяся тем, что молярное соотношение А : В предпочтительно составляет 1 : 1 - 1 : 2, молярное соотношение В : С предпочтительно составляет 1 : 1 - 1 : 10. 9. Каталитическая композиция по любому из пп.1 - 8, отличающаяся тем, что молярное соотношение В : Д составляет 1 : 0,01 - 1 : 10. 10. Каталитическая композиция по любому из пп.1 - 9, отличающаяся тем, что соединение никеля выбирается в группе, включающей хлорид, бромид, сульфат, ацетилацетонат, карбоксилаты, феноляты никеля. 11. Каталитическая композиция по любому из пп.1 - 10, отличающаяся тем, что фосфин выбирается в группе, включающей триизопропилфосфин, трициклогексилфосфин, трибензилфосфин и тетрациклогексилметилендифосфин. 12. Способ димеризации, содимеризации или олигомеризации по крайней мере одного олефина, в котором олефин вводят в контакт по крайней мере с одним соединением никеля в виде смеси или в виде комплекса по крайней мере с одним третичным фосфином, причем вышеуказанное соединение растворено, по крайней мере частично, в неводной среде ионного характера, полученной в результате контактирования по крайней мере одного галогенида алюминия по крайней мере с одним четвертичным аммонийгалогенидом, по крайней мере с одним углеводородом и с органическим производным алюминия, отличающийся тем, что в качестве углеводорода используют ароматический углеводород, а в качестве органического производного алюминия используют соединение общей формулы
AlRxX3-x,
где R означает линейный или разветвленный алкильный радикал с 2 - 8 атомами углерода;
X означает хлор или бром;
x = 1, 2 или 3.
13. Способ по п.12, отличающийся тем, что температура реакции составляет величину (-40) - (+70)oC, а давление составляет 0,1 - 20 МПа. 14. Способ по любому из пп.12 и 13, отличающийся тем, что температура реакции с олефином составляет от (-20) - (+50)oC. 15. Способ по любому из пп.13 и 14, отличающийся тем, что ароматический углеводород вводят в течение реакции с олефином.

Документы, цитированные в отчете о поиске Патент 1999 года RU2133641C1

US 5104840 A, 14.04.92
Катализатор для димеризации этилена или пропилена 1976
  • Фельдблюм Владислав Шуньевич
  • Петрушанская Нонна Вениаминовна
  • Курапова Алевтина Ивановна
  • Мушина Евгения Ароновна
  • Кренцель Борис Абрамович
  • Борисова Нина Алексеевна
SU686753A1
DE 3027782 A1, 11.02.82
Автономная тепловая пушка 2015
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
  • Березин Сергей Владимирович
RU2611700C1
СПОСОБ НЕЙТРАЛИЗАЦИИ ЗАЩЕЛОЧЕННЫХ ЭЛЕКТРОЛИТОВ ПРИ ЭЛЕКТРОХИМИЧЕСКОЙ РАЗМЕРНОЙ ОБРАБОТКЕМЕТАЛЛОВ 0
SU331117A1
Источник опорного напряжения 1973
  • Зеленский Григорий Иванович
  • Синенко Валентин Георгиевич
  • Широков Владимир Георгиевич
SU448445A1
ДИАМАГНИТНО-ТЕПЛОВОЙ СПОСОБ ПОЛУЧЕНИЯ ВРАЩАЮЩЕГО МОМЕНТА 2001
  • Киселёв В.С.
RU2220493C2

RU 2 133 641 C1

Авторы

Ив Шовэн

Сандра Энлоф

Элен Оливье

Даты

1999-07-27Публикация

1994-09-21Подача