ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДЯЩИЙ МАТЕРИАЛ Российский патент 1999 года по МПК H01B12/00 

Описание патента на изобретение RU2137235C1

Изобретение относится к материаловедению, в частности к процессам синтеза высокотемпературных оксидных сверхпроводников, и может быть использовано для изготовления элементов электронной техники.

Известен высокотемпературный сверхпроводящий материал (Чжэнь-Сяо-Дон, Ли-Сан, Голбен и др. Методика изготовления сверхпроводников на основе окиси меди. - Приборы для научных исследований 1989, N 9, с. 3 - 10), содержащий медь, барий, иттрий и кислород.

Однако, электросопротивление данного материала, со строго выдержанной стехиометрией по металлам Y1.00Ba2.00Cu3.00O6.5 + δ, в интервале 273 - 100K существенно зависит от температуры, что не дает возможности использовать его в качестве прецизионных резистивных элементов электронной техники.

Целью изобретения является получение высокотемпературного сверхпроводящего материала с близким к нулю температурным коэффициентом электросопротивления в интервале от 273 до 100K, что позволяет использовать такой материал для изготовления прецизионных низкотемпературных резисторов.

Поставленная цель достигается тем, что в высокотемпературном сверхпроводящем материале, содержащем иттрий, барий, медь и кислород, компоненты взяты при следующем соотношении, вес.%:
Иттрий - 14,18 - 15,05
Барий - 41,30 - 40,75
Медь - 28,66 - 28,28
Кислород - Остальное
Синтезированы керамические образцы высокотемпературных сверхпроводников составов: Y1.00Ba2.00Cu3.00O6.5 + δ (прототип), Y1.03Ba2.00Cu3.00O6.5 + δ , Y1.06Ba2.00Cu3.00O6.5 + δ , Y1.10Ba2.00Cu3.00O6.5 + δ , Y1.14Ba2.00Cu3.00O6.5 + δ , Y1.18Ba2.00Cu3.00O6.5 + δ , содержащие следующие количества элементов в вес.% (табл. 1).

К смеси растворов хлоридов металлов, взятых в соотношениях, указанных в табл. 1, (150 мл), при непрерывном перемешивании добавляют сначала 400 мл 0,3 М раствора оксалата аммония, затем 200 мл раствора щавелевой кислоты (9 г на 100 мл воды). После перемешивания образовавшийся осадок отделяют от маточного раствора, промывают дистиллированной водой, высушивают и обжигают в алундовом тигле на воздухе при температуре 920-940oC в течение 120-200 мин. Для получения керамического образца из синтезированного материала его измельчают до мелкодисперсного состояния, прессуют компакты под давлением 105 МПа и спекают на воздухе при 920-940oC в течение 20-40 мин.

Были измерены резистивные характеристики синтезированных керамических сверхпроводников, содержащих различное количество иттрия. Измерения проводились в температурном интервале от 273 до 77K. Результаты измерений приведены в табл. 2. На графиках 1 - 5 показана температурная зависимость электрического сопротивления синтезированных образцов.

Из данных таблицы можно заключить, что температура перехода в сверхпроводящее состояние (Tс) материалов, содержащих избыток иттрия, не зависит от его величины, что находится в соответствии с установившимся мнением, согласно которому значение температуры перехода определяется прежде всего содержанием кислорода в материале.

Характер же температурной зависимости электрического сопротивления сверхпроводников, содержащих варьируемый избыток иттрия, напрямую зависит от величины этого избытка. Образец состава Y1.00Ba2.00Cu3.00O6.5 + δ (прототип) обладает металлическим типом температурной зависимости электросопротивления (фиг. 1, кр. 1). Избыток иттрия в 0,03 г-ат (образец состава Y1.03Ba2.00Cu3.00O6.5 + δ ) уже вызывает изменение характера температурной зависимости электросопротивления, приобретающего сложный характер (фиг. 1, кр. 2). У образцов составов Y1.06-1.14Ba2.00Cu3.00O6.5 + δ сопротивление не зависит от температуры от 273 вплоть до 100K (фиг. 2, 3, 4). Температурная зависимость сопротивления образца Y1.18Ba2.00Cu3.00O6.5 + δ в указанном температурном интервале носит полупроводниковый характер (фиг. 5).

Таким образом, материал, содержащий избыток иттрия от 0,06 до 0,14 г-ат (Y1.06-1.14Ba2.00Cu3.00O6.5 + δ ), сохраняя свое основное свойство высокотемпературной сверхпроводимости, приобретает новое качество - близкий к нулю температурный коэффициент электрического сопротивления в области температур 273 - 100K.

Рентгенографическим анализом установлено, что все синтезированные высокотемпературные сверхпроводящие керамические материалы монофазны и имеют орторомбическую структуру.

Похожие патенты RU2137235C1

название год авторы номер документа
УПРАВЛЯЕМЫЙ ФОРМИРОВАТЕЛЬ ГАРМОНИК 1990
  • Кузьмичев Н.Д.
  • Славкин В.В.
RU2013857C1
СВЕРХПРОВОДЯЩИЙ ОКСИДНЫЙ МАТЕРИАЛ 1995
  • Палчаев Д.К.
  • Мурлиева Ж.Х.
  • Чакальский Б.К.
  • Агеев А.В.
  • Омаров А.К.
RU2109712C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ 2015
  • Шабанов Наби Сайдуллахович
  • Гаджимагомедов Султанахмед Ханахмедович
  • Палчаев Даир Каирович
  • Рабаданов Муртазали Хулатаевич
  • Мурлиева Жарият Хаджиевна
  • Палчаев Наби Альбертович
RU2601073C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ 1995
  • Киреев Г.А.
  • Хлебова Н.Е.
  • Илюхин Ю.В.
  • Шиков А.К.
  • Докман О.В.
RU2091880C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ МОНОКРИСТАЛЛОВ YBaCuO-δ 1990
  • Шибанова Н.М.
  • Яковлев Ю.М.
SU1800858A1
СПОСОБ ПОЛУЧЕНИЯ ДЛИННОМЕРНОГО ПРОВОДА С ВЫСОКОТЕМПЕРАТУРНЫМ СВЕРХПРОВОДЯЩИМ ПОКРЫТИЕМ 1998
  • Шиков А.К.
  • Акимов И.И.
  • Раков Д.Н.
  • Котова Е.В.
  • Белотелова Ю.Н.
  • Докман О.В.
RU2148866C1
ВЫСОКОТЕМПЕРАТУРНАЯ СВЕРХПРОВОДЯЩАЯ КЕРАМИКА 1992
  • Бочкарев В.Ф.
  • Олейник Р.Н.
  • Тимофеева Л.Ю.
RU2076398C1
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛОВ НА ОСНОВЕ Y(ВаВе)CuO 2010
  • Рабаданов Муртазали Хулатаевич
  • Палчаев Даир Каирович
  • Хидиров Шагабудин Шайдабекович
  • Мурлиева Жарият Хаджиевна
  • Самудов Шамсудин Магомедович
  • Ахмедов Шихжинет Владимирович
  • Асваров Абил Шамсудинович
RU2486161C2
КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2004
  • Сычев Сергей Александрович
  • Югай Климентий Николаевич
  • Серопян Геннадий Михайлович
  • Скутин Анатолий Александрович
  • Муравьев Александр Борисович
  • Ступак Антон Васильевич
  • Рукосуев Сергей Иванович
RU2281927C1
Изготовление градиентного керамического материала на основе YBCO с использованием плазменной обработки 2022
  • Амашаев Рустам Русланович
  • Гаджимагомедов Султанахмед Ханахмедович
  • Рабаданов Муртазали Хулатаевич
  • Рабаданова Аида Энверовна
  • Палчаев Даир Каирович
  • Гаджиев Махач Хайрудинович
  • Мурлиева Жарият Хаджиевна
  • Рагимханов Гаджимирза Балагланович
  • Шабанов Наби Сайдуллахович
  • Фараджев Шамиль Пиралиевич
  • Сайпулаев Пайзула Магомедтагирович
RU2795949C1

Иллюстрации к изобретению RU 2 137 235 C1

Реферат патента 1999 года ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДЯЩИЙ МАТЕРИАЛ

Изобретение относится к области материаловедения, в частности к процессам синтеза высокотемпературных оксидных сверхпроводников, и может быть использовано для изготовления элементов электронной техники. Техническим результатом изобретения является получение высокотемпературного сверхпроводящего материала с близким к нулю температурным коэффициентом электросопротивления в интервале от 273 до 100K, что позволяет использовать такой материал для изготовления прецизионных низкотемпературных резисторов. Согласно изобретению высокотемпературный сверхпроводящий материал содержит иттрий, барий, медь и кислород, компоненты взяты при следующем соотношении, вес.%: иттрий - 14,13-15,05, барий - 41,30-40,75 медь -28,66-28,28, кислород - остальное. 5 ил., 2 табл.

Формула изобретения RU 2 137 235 C1

Высокотемпературный сверхпроводящий материал, содержащий иттрий, барий, медь и кислород, отличающийся тем, что компоненты взяты при следующем соотношении, вес.%:
Иттрий - 14,18-15,05
Барий - 41,30-40,75
Медь - 28,66-28,28
Кислород - Остальное

Документы, цитированные в отчете о поиске Патент 1999 года RU2137235C1

Методика изготовления сверхпроводников на основе окиси меди
Приборы для научных исследований, 1989, № 9, с
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
US 5416072 A, 16.05.95
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ТЕПЛОПРОВОДНОСТИ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ J, - BA - CU - O КЕРАМИКИ 1992
  • Филатов Николай Яковлевич
  • Царев Вячеслав Владимирович
  • Никоноров Владимир Александрович
RU2009558C1

RU 2 137 235 C1

Авторы

Зорина Т.М.

Нищев К.Н.

Кяшкин В.М.

Логинов В.С.

Томилин О.Б.

Даты

1999-09-10Публикация

1998-07-08Подача