Изобретение относится к области металлургии, в частности к составам инструментальных сталей, которые могут найти применение при изготовлении деталей, работающих в условиях термоциклического нагружениях (ТЦН).
Известны инструментальные стали, например штамповые, следующего состава [1], мас.%:
Углерод - 0,4-0,7
Марганец - 0,4-0,9
Кремний - 0,15-0,5
Хром - 0,7-1,0
Молибден - 0,2-0,45
Никель - 1,4-1,8
Ванадий - 0,08-0,2
Титан - 0,005-0,01
Алюминий - 0,002-0,02
Церий - 0,005-0,05
Ниобий - 0,005-0,05
Азот - 0,013-0,019
Цирконий - -
Железо - Остальное
а также следующего состава [2], мас.%:
Углерод - 0,4-0,8
Марганец - 0,4-0,9
Кремний - 0,15-0,5
Хром - 0,5-0,8
Молибден - 0,15-0,3
Никель - 1,4-1,8
Ванадий - 0,05-0,5
Титан - 0,04-0,1
Алюминий - 0,009-0,02
Церий - -
Ниобий - 0,005-0,1
Азот - 0,009-0,02
Цирконий - 0,01-0,1
Железо - Остальное
Эти стали обладают довольно высоким уровнем таких свойств, как прочность при 400 - 600oC, ударная вязкость, разгаростойкость и теплостойкость.
Однако эти стали многокомпонентны, содержат дорогостоящие дефицитные металлы, они недостаточно технологичны.
Наиболее близкой по составу и технической сущности является сталь [3], содержащая, мас.%:
Углерод - 0,25 - 0,50
Кремний - 0,20 - 0,50
Марганец - 0,2 - 3,0
По крайней мере один компонент из группы элементов, повышающих твердость, в частности титан - 0,3 - 10,0
Железо - Остальное
Указанная сталь по своим механическим свойствам в основном удовлетворяет требованиям, предъявляемым к сталям, подвергающимся динамическим нагрузкам в условиях абразивного износа. Однако она не удовлетворяет требованиям по технологическим свойствами, термостойкости, кроме того, недостатком этой стали является низкая сопротивляемость образованию трещин термомеханической усталости (ТМУ) в условиях термоциклического нагружения.
Задачей изобретения является устранение указанных недостатков, а именно повышение сопротивляемости материала образованию трещин термомеханической усталости в условиях температурно-циклического нагружения при одновременном улучшении технологичности стали.
Указанная задача решается тем, что предлагаемая сталь, содержащая углерод, кремний, марганец, титан и железо имеет следующее соотношение компонентов, мас.%:
Углерод - 0,50 - 1,50
Кремний - 0,40 - 0,80
Марганец - 0,05 - 0,10
Титан - 2,50 - 7,50
Железо - Остальное
Указанное содержание компонентов и их соотношение обосновано следующим.
Титан вводится в количестве, обеспечивающем получение специфической структуры, а именно мелкозернистой ферритной матрицы с равномерно распределенными в ней дисперсными карбидами титана, а также при определенном избытке титана интерметаллидами Fe2Ti. Обладая такой структурой, материал деталей, работающих в условиях циклической смены температур, не претерпевает структурных превращений, при этом не возникает фазового наклепа, что уменьшает склонность материала к образованию трещин ТМУ. Титан вводится из расчета Ti = 4C+0,5-1,5C.
Введение титана более 7,5% при данном соотношении элементов вызывает технологические трудности приготовления сплава и экономически неоправданно. Введение титана менее 2,5% не позволяет связать весь углерод в карбиды титана, что приводит к структурным превращениям в стали при термоциклическом воздействии.
Марганец уменьшает теплопроводность стали и тем самым отрицательно влияет на разгаростойкость материала. Поэтому верхний предел содержания марганца ограничен 0,10%. Нижний предел содержания марганца определяется минимальным количеством, необходим для связывания остаточной серы в сульфид марганца для избежания красноломкости стали.
Содержание кремния 0,40 - 0,80% принято на основании практики производства сталей с повышенными теплостойкими свойствами.
Техническим эффектом от использования изобретения является повышение разгаростойкости при сохранении высокого уровня механических свойств и снижении количества легирующих элементов. Улучшение разгаростойкости обеспечивается однородностью матрицы сплава, мелкозернистостью структуры, при этом теплостойкость и износостойкость обеспечиваются наличием равномерно распределенных в матрице карбидов титана, титанидов железа, а также легированностью феррита.
Опытные плавки стали проводили в индукционной печи с магнезитовой футеровкой. В качестве шихтовых материалов использовали низколегированный стальной лом, лом титана, карбюризаторы. Разливку стали в формы проводили при температуре 1680 - 1700oC.
В таблице 1 приведены химические составы опытных плавок.
В таблице 2 приведены механические свойства сталей в литом состоянии, а также характеристика, определяющая разгаростойкость сталей, а именно - количество циклов ТЦН до образования трещин ТМУ критической величины, определенное на установке для испытания металлов на усталость [4].
Типовой режим испытаний сталей на образование трещин ТМУ и износ штампов твердожидкой штамповки был следующий: максимальное напряжение на гравюре штампа σВ= 1900 МПа, максимальная температура на гравюре штампа Tn=953 K, градиент температур не поверхности штампа grad T = 275 K/мм, длительность штамповки τ = 3 c.
Список источников информации
1. Авторское свидетельство СССР N 1044663, C 22 C 38/50, 1983.
2. Авторское свидетельство СССР N 931791, C 22 C 38/50, 1982.
3. Патент Франции N 2180192, C 22 C 38/50, 1973.
4. Авторское свидетельство СССР N 313132, 1971.
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ДЛЯ НАПЛАВКИ | 1992 |
|
RU2014193C1 |
СОСТАВ СПЛАВА | 1996 |
|
RU2104324C1 |
Штамповая сталь | 1989 |
|
SU1622418A1 |
СОСТАВ ДЛЯ НАПЛАВКИ | 1992 |
|
RU2031765C1 |
ВЫСОКОПРОЧНЫЙ ЧУГУН | 1997 |
|
RU2119547C1 |
ТЕПЛОСТОЙКАЯ СТАЛЬ ДЛЯ ВОДООХЛАЖДАЕМЫХ ИЗЛОЖНИЦ | 2012 |
|
RU2494167C1 |
СОСТАВ СПЛАВА | 1998 |
|
RU2131945C1 |
Литейная сталь | 1979 |
|
SU821527A1 |
Способ изготовления трубы из теплостойкой стали для паровой турбины | 2023 |
|
RU2822643C1 |
Литейная инструментальная сталь | 1981 |
|
SU1020454A1 |
Изобретение может быть использовано для изготовления деталей, работающих в условиях термоциклического нагружения. Предложенная сталь содержит компоненты в следующем соотношении (в мас.%): углерод 0,5-1,5; кремний 0,4-0,8; марганец 0,05-0,1; титан 2,5-7,5; железо остальное. Техническим результатом изобретения является повышение разгаростойкости при сохранении высокого уровня механических свойств и снижение количества легирующих элементов. Предел прочности стали составляет σВ 450 - 530 МПа, σТ 320-390 МПа, пластичность δ 10-20%, ударная вязкость aн 1,0-2,3 кгм/см2, количество циклов ТЦН 330-440. 2 табл.
Сталь, содержащая углерод, кремний, марганец, титан и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:
Углерод - 0,50 - 1,50
Кремний - 0,40 - 0,80
Марганец - 0,05 - 0,10
Титан - 2,50 - 7,50
Железо - Остальное
СПОСОБ ЭЗОФАГОЕЮНОСТОМИИ ПРИ ГАСТРЭКТОМИИ И РЕЗЕКЦИИ ПИЩЕВОДА | 1998 |
|
RU2180192C2 |
Сталь | 1979 |
|
SU834211A1 |
Штамповая сталь | 1982 |
|
SU1044663A1 |
Штамповая сталь | 1980 |
|
SU931791A1 |
Авторы
Даты
2000-01-10—Публикация
1999-01-28—Подача