Изобретение относится к способу каталитического облагораживания продуктов термических процессов и может быть использовано в нефтеперерабатывающей промышленности.
УРОВЕНЬ ТЕХНИКИ заключается в следующем: известен способ переработки низкооктановых бензинов термического происхождения путем каталитического крекинга предварительно приготовленной смеси его с вакуумным газойлем в присутсвии углеводородного газа-разбавителя (Пат. РФ на изобретение N 2086604. Гайрбеков Т.М., Такаева М.И., Хаджиев С.Н. Способ переработки низкооктановых бензинов. - Грозненский нефтяной научно-исследовательский институт. - Заявл. 10.06.93; Опубл. 10.08.97. - БИ N 22. - МКИ4 6 C 10 G 11/05).
Недостатком данного способа является излишняя длительность контактирования легкого реакционноспособного бензина термического происхождения с катализатором крекинга, что неизбежно приводит к его крекированию до газообразных продуктов и снижению выхода высокооктанового бензина.
Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ (Патент РФ N 2059688, опубл. 03.05.96 г.).
Недостатком данного способа является то, что при данном способе каталитического облагораживания продуктов установки коксования не используется возможность получения из них высокооктанового бензина и малосернистого (содержание серы менее 0,05 мас.%) дизельного топлива.
Изобретение направлено на решение задачи получения высокооктанового бензина и малосернистого дизельного топлива из продуктов установки замедленного коксования - бензина и газойля.
Полученный технический результат позволяет решить поставленную задачу. Данный технический результат достигается способом каталитического облагораживания продуктов термических процессов (варианты). Первый вариант заключается в том, что бензин установки замедленного коксования, нагретый до температуры 350-400oC, вводят в различные зоны реакционной части реактора установки каталитического крекинга вакуумного газойля в количестве 1-10 об.% на сырье, контактируют с 50-100% объема катализатора с последующим выделением высокооктанового бензина или смешивают с прямогонным дизельным топливом в количестве от 1 до 20 об.%, подвергают гидроочистке при контактировании с катализатором, содержащим оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] в количестве 1,02-4,08 мас.%, с последующим выделением стабильного малосернистого дизельного топлива и облагороженной бензиновой фракции - компонента сырья установки каталитического риформинга. Второй вариант заключается в том, что газойль установки замедленного коксования смешивают с прямогонным дизельным топливом в количестве от 1 до 30 об.%, подвергают гидроочистке при контактировании с катализатором, содержащим оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] в количестве 1,02-4,08 мас.% с последующим выделением стабильного малосернистого дизельного топлива, или нагретый до температуры 350-450oC вводят в различные зоны реакционной части реактора установки каталитического крекинга вакуумного газойля в количестве 1-40 об.% на сырье, контактируют с 70-100 об.% катализатора с последующим выделением высокооктанового бензина.
СУЩЕСТВЕННЫМИ ПРИЗНАКАМИ предлагаемого изобретения являются способы каталитического облагораживания продуктов термических процессов путем гидроочистки в присутствии водородсодержащего газа и катализатора, содержащего оксиды молибдена, никеля и алюминия при повышенных температуре и давлении и путем каталитического крекинга на цеолитсодержащем катализаторе с последующим разделением на фракции.
ОТЛИЧИТЕЛЬНЫМИ ПРИЗНАКАМИ предлагаемого изобретения является то, что по первому варианту с целью получения высокооктанового бензина и малосернистого дизельного топлива бензин установки замедленного коксования, нагретый до температуры 350-400oC, вводят в различные зоны реакционной части реактора установки каталитического крекинга вакуумного газойля в количестве 1-10 об.% на сырье, контактируют с 50-100% объема катализатора с последующим выделением высокооктанового бензина или смешивают с прямогонным дизельным топливом в количестве от 1 до 20 об.%, подвергают гидроочистке при контактировании с катализатором, содержащим оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] в количестве 1,02-4,08 мас.%, с последующим выделением стабильного малосернистого дизельного топлива и облагороженной бензиновой фракции - компонента сырья установки каталитического риформинга, а по второму варианту газойль установки замедленного коксования смешивают с прямогонным дизельным топливом в количестве от 1 до 30 об.%, подвергают гидроочистке при контактировании с катализатором, содержащим оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] в количестве 1,02-4,08 мас.% с последующим выделением стабильного малосернистого дизельного топлива, или нагретый до температуры 350-450oC вводят в различные зоны реакционной части реактора установки каталитического крекинга вакуумного газойля в количестве 1-40 об.% на сырье, контактируют с 70-100 об.% катализатора с последующим выделением высокооктанового бензина.
НОВИЗНА предлагаемого изобретения заключается в том, что в присутствии бензина установки замедленного коксования, обогащенного реакционноспособными молекулами, гидрообессеривание прямогонного дизельного топлива на катализаторе, содержащем оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] , протекает с большей глубиной, при этом наличие этого комплекса, повышающего гидрирующую активность алюмоникельмолибденового катализатора, нивелирует отрицательное коксогенное воздействие непредельных углеводородов, входящих в состав бензина коксования, гидрируя их. В данных условиях степень обессеривания дизельного топлива и бензина коксования достигает 95-96% с получением высококачественного малосернистого дизельного топлива и полноценного компонента сырья установки каталитического риформинга.
Введение бензина и легкого газойля установки замедленного коксования в различные зоны реакционной части реактора установки каталитического крекинга, минуя стадию их нагревания в трубчатой печи в смеси с вакуумным газойлем, предотвращает термическое разложение реакционноспособного сырья и отложение кокса на внутренней поверхности труб в нагревательной печи, а также позволяет осуществить контакт бензина коксования с 50-100% объема катализатора, а легкого газойля коксования с 70-100% объема катализатора, тем самым снижая время контакта бензина и легкого газойля установки замедленного коксования с катализатором, что уменьшает степень крекирования их до газообразных продуктов и позволяет увеличить отбор высокооктанового бензина.
Для проверки эффективности предлагаемого способа каталитического облагораживания бензина и легкого газойля установки замедленного коксования были проведены опыты по гидроочистке различных смесей и каталитическому крекингу вакуумного газойля с добавлением в различные части реакционной зоны бензина и легкого газойля коксования, результаты которых представлены примерами и таблицами 1 и 2.
Для сравнения проведены опыты гидроочистки прямогонного дизельного топлива на базовом катализаторе ГО-70 и каталитического крекинга вакуумного газойля на катализаторе ЦЕОКАР-10. Условия и результаты опытов представлены в тех же таблицах 1 и 2.
Изобретение иллюстрируется следующими примерами:
ПРИМЕР 1. 49,5 мл вакуумного газойля, нагретого до температуры 475oC, поступает в верхнюю часть реактора лабораторной проточной установки каталитического крекинга со стационарным слоем катализатора ЦЕОКАР-10, загруженного в количестве 100 см3, и проходит весь слой катализатора сверху вниз в течение 30 мин. Одновременно 0,5 мл бензина установки замедленного коксования, нагретого до 350oC, дозатором подается в верхнюю часть реактора и проходит 100% объема катализатора (100 см3) сверху вниз в смеси с поступающим с верха реактора вакуумным газойлем. Температура в реакционной зоне 475oC. Выход газообразных продуктов фиксируется газовым счетчиком, а жидкие продукты собираются в приемнике, где конденсируются с последующим разделением на бензиновую фракцию, легкий и тяжелый газойли. По окончании опыта определяется содержание кокса на катализаторе хроматографическим методом.
В результате крекинга получают в мас.%: газ - 19,0; бензин - 29,0; легкий газойль - 42,8; тяжелый газойль - 4,3; кокс - 4,9. Качество получаемого бензина оценивали по содержанию в нем ароматических углеводородов, которое для данного примера составило 30,7 мас.%
Влияние количества и температуры добавляемого бензина установки замедленного коксования на выход бензина представлено в табл. 1.
Исходное сырье - прямогонное дизельное топливо, выкипающее в пределах 180-360oC и содержащее 0,90 мас.% серы, смешивали с легким газойлем установки замедленного коксования в следующем соотношении: 99 об.% дизельного топлива и 1 об.% легкого газойля коксования. Смешанное сырье подвергали гидроочистке на лабораторной проточной установке под давлением водорода на алюмоникельмолибденовом катализаторе, дополнительно содержащем 1,02 мас.% кремневольфрамового комплекса [SiO2•12WO3] , при следующих условиях: температура 390oC; давление 3,5 МПа; объемная скорость подачи сырья 2,5 ч-1; отношение водорода к сырью 450:1 нл/л. В результате процесса гидроочистки получено дизельное топливо, содержащее 0,042 маc.% серы (табл.2).
ПРИМЕР 2. 47,5 мл вакуумного газойля, нагретого до температуры 475oC, поступает в верхнюю часть реактора лабораторной проточной установки каталитического крекинга со стационарным слоем катализатора ЦЕОКАР-10, загруженного в количестве 100 см3, и проходит весь слой катализатора сверху вниз в течение 30 мин. Одновременно 2,5 мл бензина установки замедленного коксования, нагретого до 375oC, дозатором подается в среднюю часть реактора и проходит 75% объема катализатора (75 см3) сверху вниз в смеси с поступающим с верха реактора вакуумным газойлем.
Температура в реакционной зоне 475oC.
Отбор и оценка качества получаемых продуктов осуществляется аналогично примеру 1.
В результате крекинга получают, маc.%: газ - 19,5; бензин - 30,5; легкий газойль - 40,4; тяжелый газойль - 5,8; кокс - 3,8.
Содержание ароматических углеводородов в бензине - 31,2 маc.% (табл. 1).
Исходное сырье - прямогонное дизельное топливо, выкипающее в пределах 180-360oC и содержащее 0,90 маc.% серы, смешивали с легким газойлем установки замедленного коксования в следующем соотношении: 85 об.% дизельного топлива и 15 об.% легкого газойля коксования. Смешанное сырье подвергали гидроочистке на лабораторной проточной установке под давлением водорода на алюмоникельмолибденовом катализаторе, дополнительно содержащем 2,55 мас.% кремневольфрамового комплекса [SiO2 • 12WO3]. Условия проведения процесса гидроочистки аналогичны примеру 1.
В результате процесса гидроочистки получено дизельное топливо, содержащее 0,047 маc.% серы (табл.2).
ПРИМЕР 3. 45,0 мл вакуумного газойля, нагретого до температуры 475oC, поступает в верхнюю часть реактора лабораторной проточной установки каталитического крекинга со стационарным слоем катализатора ЦЕОКАР-10, загруженного в количестве 100 см3, и проходит весь слой катализатора сверху вниз в течение 30 мин. Одновременно 5,0 мл бензина установки замедленного коксования, нагретого до температуры 400oC, дозатором подается в среднюю часть реактора и проходит 50% объема катализатора (50 см3) сверху вниз в смеси с поступающим с верха реактора вакуумным газойлем.
Температура в реакционной зоне 475oC.
Отбор и оценка качества получаемых продуктов осуществляется аналогично примеру 1.
В результате крекинга получают, мас.%: газ - 18,1; бензин - 32,9; легкий газойль - 40,5; тяжелый газойль - 5,0; кокс - 3,5.
Содержание ароматических углеводородов в бензине - 31,3 мас.% (табл. 1).
Исходное сырье - прямогонное дизельное топливо, выкипающее в пределах 180-360oC и содержащее 0,90 мас.% серы, смешивали с легким газойлем установки замедленного коксования в следующем соотношении: 70 об.% дизельного топлива и 30 об.% легкого газойля коксования. Смешанное сырье подвергали гидроочистке на лабораторной проточной установке под давлением водорода на алюмоникельмолибденовом катализаторе, дополнительно содержащем 4,08 мас.% кремневольфрамового комплекса [SiO2 • 12WO3]. Условия проведения процесса гидроочистки аналогичны примеру 1.
В результате процесса гидроочистки получено дизельное топливо, содержащее 0,050 мас.% серы (табл.2).
ПРИМЕР 4. 49,5 мл вакуумного газойля, нагретого до температуры 475oC, поступает в верхнюю часть реактора лабораторной проточной установки каталитического крекинга со стационарным слоем катализатора ЦЕОКАР-10, загруженного в количестве 100 см3, и проходит весь слой катализатора сверху вниз в течение 30 мин. Одновременно 0,5 мл легкого газойля установки замедленного коксования, нагретого до температуры 350oC, дозатором подается в верхнюю часть реактора и проходит 100% объема катализатора (100 см3) сверху вниз в смеси с поступающим с верха реактора вакуумным газойлем.
Температура в реакционной зоне 475oC.
Отбор и оценка качества получаемых продуктов осуществляется аналогично примеру 1.
В результате крекинга получают в мас.%: газ - 19,0; бензин - 27,2; легкий газойль - 41,0; тяжелый газойль - 8,3; кокс - 4,5.
Содержание ароматических углеводородов в бензине - 31,0 мас.% (табл. 1).
Исходное сырье - прямогонное дизельное топливо, выкипающее в пределах 180-360oC и содержащее 0,90 мас.% серы, смешивали с бензином установки замедленного коксования в следующем соотношении: 99 об.% дизельного топлива и 1 об. % бензина коксования. Смешанное сырье подвергали гидроочистке аналогично примеру 3 при температуре 360oC.
В результате процесса гидроочистки получены дизельное топливо, содержащее 0,039 мас.% серы, и бензин, содержащий 0,029 мас.% серы (табл.2).
ПРИМЕР 5. 40,0 мл вакуумного газойля, нагретого до температуры 475oC, поступает в верхнюю часть реактора лабораторной проточной установки каталитического крекинга со стационарным слоем катализатора ЦЕОКАР-10, загруженного в количестве 100 см3, и проходит весь слой катализатора сверху вниз в течение 30 мин. Одновременно 10,0 мл легкого газойля установки замедленного коксования, нагретого до температуры 400oC, дозатором подается в среднюю часть реактора и проходит 85% объема катализатора (85 см3) сверху вниз в смеси с поступающим с верха реактора вакуумным газойлем.
Температура в реакционной зоне 475oC.
Отбор и оценка качества получаемых продуктов осуществляется аналогично примеру 1.
В результате крекинга получают в мас. %: газ - 18,5; бензин - 26,9; легкий газойль - 43,3; тяжелый газойль - 7,2; кокс - 4,1.
Содержание ароматических углеводородов в бензине - 33,0 мас.% (табл. 1).
Исходное сырье - прямогонное дизельное топливо, выкипающее в пределах 180-360oC и содержащее 0,90 мас.% серы, смешивали с бензином замедленного коксования в следующем соотношении: 90 об.% дизельного топлива и 10 об.% бензина коксования. Смешанное сырье подвергали гидроочистке аналогично примеру 2 при температуре 360oC.
В результате процесса гидроочистки получены дизельное топливо, содержащее 0,038 мас.% серы, и бензин, содержащий 0,027 мас.% серы (табл.2).
ПРИМЕР 6. 30,0 мл вакуумного газойля, нагретого до температуры 475oC, поступает в верхнюю часть реактора лабораторной проточной установки каталитического крекинга со стационарным слоем катализатора ЦЕОКАР-10, загруженного в количестве 100 см3, и проходит весь слой катализатора сверху вниз в течение 30 мин. Одновременно 20,0 мл легкого газойля установки замедленного коксования, нагретого до температуры 450oC, дозатором подается в среднюю часть реактора и проходит 75% объема катализатора (75 см3) сверху вниз в смеси с поступающим с верха реактора вакуумным газойлем.
Температура в реакционной зоне 475oC.
Отбор и оценка качества получаемых продуктов осуществляется аналогично примеру 1.
В результате крекинга получают в мас. %: газ - 19,8; бензин - 27,0; легкий газойль - 43,0; тяжелый газойль - 6,0; кокс - 4,2.
Содержание ароматических углеводородов в бензине - 33,8 мас.% (табл. 1).
Исходное сырье - прямогонное дизельное топливо, выкипающее в пределах 180-360oC и содержащее 0,90 мас.% серы, смешивали с бензином установки замедленного коксования в следующем соотношении: 80 об.% дизельного топлива и 20 об. % бензина коксования. Смешанное сырье подвергали гидроочистке аналогично примеру 1 при температуре 360oC.
В результате процесса гидроочистки получены дизельное топливо, содержащее 0,037 мас.% серы, и бензин, содержащий 0,026 мас.% серы (табл.2).
Из данных, представленных в табл. 1 и 2, следует, что предлагаемый способ каталитического облагораживания продуктов установки замедленного коксования - бензина и легкого газойля позволяет повысить глубину переработки нефти с увеличением выработки высококачественного малосернистого дизельного топлива и высокооктанового бензина.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА С УЛУЧШЕННЫМИ ЭКОЛОГИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ | 2004 |
|
RU2252243C1 |
СПОСОБ ОБЛАГОРАЖИВАНИЯ ВТОРИЧНЫХ БЕНЗИНОВ | 1995 |
|
RU2089590C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗИМНЕГО ДИЗЕЛЬНОГО ТОПЛИВА | 1998 |
|
RU2126437C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2002 |
|
RU2205200C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2002 |
|
RU2232183C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1998 |
|
RU2147255C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2015 |
|
RU2569686C1 |
СПОСОБ ПЕРЕРАБОТКИ ДИСТИЛЛЯТОВ ВТОРИЧНОГО ПРОИСХОЖДЕНИЯ | 1998 |
|
RU2135548C1 |
СПОСОБ ПОЛУЧЕНИЯ НЕФТЕПРОДУКТОВ | 2001 |
|
RU2185419C1 |
Способ облагораживания бензинов вторичного происхождения | 1990 |
|
SU1768618A1 |
Использование: нефтеперерабатывающая отрасль промышленности. Сущность: бензин установки замедленного коксования, нагретый до температуры 350-400oC, вводят в различные зоны реактора установки каталитического крекинга вакуумного газойля в количестве 1-10 об.% на сырье, контактируют с 50-100% объема катализатора с последующим выделением высокооктанового бензина или смешивают с прямогонным дизельным топливом в количестве от 1 до 20 об.%, подвергают гидроочистке при контактировании с катализатором, содержащим оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] в количестве 1,02-4,08 мас.%, с последующим выделением стабильного малосернистого дизельного топлива и облагороженной бензиновой фракции - компонента сырья установки каталитического реформинга, а газойль установки замедленного коксования смешивают с прямогонным дизельным топливом в количестве от 1 до 30 об.%, подвергают гидроочистке при контактировании с катализатором, содержащим оксиды молибдена, никеля, алюминия и кремневольфрамовый комплекс [SiO2•12WO3] количестве 1,02-4,08 мас. %, с последующим выделением стабильного малосернистого дизельного топлива, или нагретый до температуры 350-450°С вводят в различные зоны реактора установки каталитического крекинга вакуумного газойля в количестве 1-40 об.% на сырье, контактируют с 70-100 об.% катализатора с последующим выделением высокооктанового бензина. Технический результат - получение высокооктанового бензина и малосернистого дизельного топлива. 2 с. п. ф-лы, 2 табл.
RU 2059688 C1, 10.05.96 | |||
СПОСОБ ПЕРЕРАБОТКИ НИЗКООКТАНОВЫХ БЕНЗИНОВ | 1993 |
|
RU2086604C1 |
Способ каталитической переработки газойлевых фракций | 1991 |
|
SU1772134A1 |
СПОСОБ ОБЛАГОРАЖИВАНИЯ ВТОРИЧНЫХ БЕНЗИНОВ | 1995 |
|
RU2089590C1 |
СПОСОБ ПОЛУЧЕНИЯ АВТОМОБИЛЬНОГО БЕНЗИНА | 1996 |
|
RU2091436C1 |
СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ | 1997 |
|
RU2114897C1 |
Способ переработки продуктов термическойдЕСТРуКции НЕфТяНОгО СыРья | 1978 |
|
SU827530A1 |
Способ переработки вакуумного газойля | 1989 |
|
SU1696458A1 |
Способ облагораживания бензинов вторичного происхождения | 1990 |
|
SU1768618A1 |
US 3442792 A, 06.05.69 | |||
US 4780193 A, 25.10.88. |
Авторы
Даты
2000-04-20—Публикация
1998-11-11—Подача