Настоящее изобретение относится к способам получения катализаторов на основе меди и цинка для процесса низкотемпературной паровой конверсии оксида углерода.
Известен способ приготовления катализатора для паровой конверсии оксида углерода, включающий смешение и обработку медьсодержащих и цинксодержащих компонентов, оксида марганца и алюмината кальция комплексообразующим азотсодержащим агентом при 80-100oC с последующим формованием и сушкой при 100-200oC (SU 1380003).
Катализатор, приготовленный по этой технологии, не удовлетворяет требованиям по механической прочности и термостабильности. Термин "термостабильность" является устоявшимся и характеризует устойчивость активного компонента катализатора к спеканию при перегревах выше температуры эксплуатации (Catalyst Handbook, edited by Martyn V.Twigg, Manson publishing, 1989, England).
Наиболее близким к изобретению по технической сущности и достигаемым результатам является способ получения катализатора конверсии оксида углерода водяным паром, включающий смешение цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формование гранул катализатора с последующей термообработкой (SU 1732537).
В известном способе термообработку осуществляют путем провяливания на воздухе или сушки, которую проводят при 70-130oC в течение 2 - 6 часов.
Недостатком катализатора, полученного по этой технологии, является низкая термостабильность.
Сущность изобретения
Задачей, решаемой настоящим изобретением, является разработка и создание способа получения катализатора конверсии оксида углерода водяным паром, при котором катализатор приобретает улучшенные параметры при сохранении такой же активности и прочности, как у катализатора, полученного по способу - ближайшему аналогу.
В результате решения данной задачи реализуется новый технический результат, заключающийся в том, что повышается термостабильность катализатора.
Указанный технический результат достигается тем, что в способе получения катализатора конверсии оксида углерода водяным паром, включающем смешение цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формование гранул катализатора с последующей термообработкой, при смешении цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов при общем содержании не более 2,0 мас.%.
В качестве соединения щелочноземельных металлов используют, вещество, выбранное из группы: оксиды, гидроксиды, карбонаты кальция; оксиды, гидроксиды, карбонаты магния, а в качестве соединения редкоземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты лантана; оксиды, гидроксиды, карбонаты церия; оксиды, гидроксиды, карбонаты неодима.
Основным отличительным признаком настоящего изобретения является то, что при смешении компонентов дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов при общем содержании не более 2,0 мас.%.
Дополнительный отличительный признак состоит в том, что в качестве соединения щелочноземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты кальция; оксиды, гидроксиды, карбонаты магния, а в качестве соединения редкоземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты лантана; оксиды, гидроксиды, карбонаты церия; оксиды, гидроксиды, карбонаты неодима.
Предлагаемая совокупность признаков для способа получения катализатора конверсии оксида углерода водяным паром соответствует условиям патентоспособности "новизна" и "изобретательский уровень" по следующим соображениям. Из источников информации не известно, что предлагаемая совокупность признаков приводит к решению вышеуказанной задачи с получением нового технического результата, а именно: дополнительное введение соединений щелочноземельных металлов и/или соединений редкоземельных металлов при общем содержании не более 2,0 мас.% при смешении компонентов катализатора обеспечивает повышение термостабильности катализатора для низкотемпературной паровой конверсии оксида углерода при сохранении его высокой прочности и активности. Это объясняется тем, что добавление соединений щелочноземельных металлов при смешении компонентов катализатора увеличивает степень гидратации алюминатов кальция и соответственно степень взаимодействия активных компонентов с гидроксоалюминатами кальция, что приводит к развитию удельной поверхности катализатора, улучшению формуемости катализаторной массы и, в конечном итоге, к получению катализатора с повышенной термостабильностью. Добавление к компонентам катализатора соединений редкоземельных металлов препятствует спеканию активного компонента - меди, то есть также повышает термостабильность катализатора, его устойчивость к возможным перегревам при эксплуатации.
Вышеуказанные добавки соединений щелочноземельных и редкоземельных металлов нецелесообразно вводить в количестве более 2,0 мас.%, так как при повышенном содержании соединений щелочноземельных металлов в процессе гидратации алюминатов кальция возрастает содержание соединений типа кальцита, резко снижающих прочность катализатора, а повышенное содержание соединений редкоземельных металлов существенно снижает активность катализатора в конверсии оксида углерода водяным паром.
Сведения, подтверждающие возможность осуществления изобретения.
Пример 1 (по способу - ближайшему аналогу).
В смеситель загружают 250 г цинкмедного соединения с содержанием Zn0 - 43 мас.% и CuO - 57 мас.% (в пересчете на прокаленное вещество) и промоторы - 0,8 г молотого активированного угля, 0,6 г основного карбоната марганца, 70 г технического алюмината кальция. После смешения вышеуказанных веществ добавляют 45 мл воды, перемешивают и доводят массу до состояния формуемости. После формования гранул их сушат и подвергают термообработке в присутствии паров воды. Испытания полученного катализатора проводят при следующих условиях:
Температура 180oC, объемная скорость 5000 ч-1 соотношение пар:газ=0,7. Активность определяют как степень конверсии α оксида углерода, термостабильность как (α-α1)/α, где α - где степень конверсии оксида углерода, α1 - степень конверсии оксида углерода после перегрева катализатора при 350oC в течение 2 ч в условиях реакционной среды. Уменьшение значения этого показателя означает повышение термостабильности катализатора, то есть улучшение его эксплуатационной характеристики.
Результаты испытаний прочности, активности и термостабильности образца катализатора в процессе низкотемпературной паровой конверсии оксида углерода приведены в табл. 1.
Ниже приведены примеры (2 - 6) для описываемого способа получения катализатора конверсии оксида углерода водяным паром.
Испытания образцов катализатора, полученных по примерам (2 - 6), проводят, как в примере 1. Результаты испытаний приведены в табл. 1.
Пример 2.
Катализатор готовят и испытывают как в примере 4, но дополнительно вводят 1,00 г оксида кальция.
Пример 3.
Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 0,84 г карбоната лантана, 0,27 г карбоната церия и 0,10 г гидроксида неодима.
Пример 4.
Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 1,06 г гидроксида кальция и 0,2 г оксида магния.
Пример 5.
Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 1,07 карбоната кальция и 0,4 г оксида церия.
Пример 6 (с предельным содержанием соединений щелочноземельных и редкоземельных металлов).
Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 0,5 г оксида кальция, 1,16 г гидроксида магния, 1,20 г оксида лантана, 0,10 г гидроксида церия и 0,9 г оксида неодима.
Из сравнения примера 1 (способа - ближайшего аналога) с примерами (2 - 6) для описываемого способа приготовления катализатора видно, что при дополнительном введении соединений щелочноземельных и/или редкоземельных металлов в количестве не более 2,0 мас.% получают катализатор с повышенной термостабильностью при сохранении высокой активности и прочности на уровне катализатора, полученного по способу - ближайшему аналогу.
Пример 7 (с запредельным содержанием соединений щелочноземельных и редкоземельных металлов).
Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 1,00 г оксида кальция, 1,00 г оксида магния, 0,84 г карбоната лантана, 1,0 г оксида церия и 0,49 г гидроксида неодима.
Как видно из результатов испытаний, при запредельном содержании щелочноземельных и редкоземельных металлов резко уменьшается прочность катализатора и снижается его активность.
В табл. 2 приведены данные по содержанию в образцах катализатора соединений щелочноземельных и редкоземельных металлов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ПАРОВОЙ КОНВЕРСИИ ОКСИДА УГЛЕРОДА И КАТАЛИЗАТОР ПАРОВОЙ КОНВЕРСИИ ОКСИДА УГЛЕРОДА | 2000 |
|
RU2170615C1 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ СЕРЫ ПО ПРОЦЕССУ КЛАУСА И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1996 |
|
RU2103060C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ НИЗКОТЕМПЕРАТУРНОЙ КОНВЕРСИИ ОКСИДА УГЛЕРОДА ВОДЯНЫМ ПАРОМ | 2007 |
|
RU2358804C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ НИЗКОТЕМПЕРАТУРНОЙ КОНВЕРСИИ ОКСИДА УГЛЕРОДА ВОДЯНЫМ ПАРОМ | 2011 |
|
RU2457028C1 |
КАТАЛИЗАТОР РИФОРМИНГА ГАЗООБРАЗНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ (ВАРИАНТЫ) | 2013 |
|
RU2549878C1 |
СПОСОБ ПАРОВОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ | 1993 |
|
RU2071933C1 |
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ АЛКИЛАРОМАТИЧЕСКИХ, АЛКИЛПИРИДИНОВЫХ И ОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ | 2018 |
|
RU2664124C1 |
СИГАРЕТА С НИЗКИМ УРОВНЕМ ПОБОЧНОЙ СТРУИ ДЫМА, С ГОРЮЧЕЙ БУМАГОЙ, ИМЕЮЩЕЙ МОДИФИЦИРОВАННЫЕ ХАРАКТЕРИСТИКИ ПЕПЛА | 2003 |
|
RU2305480C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ КОНВЕРСИИ ОКСИДА УГЛЕРОДА С ВОДЯНЫМ ПАРОМ | 1988 |
|
RU1584201C |
КАТАЛИЗАТОР ОКИСЛЕНИЯ АММИАКА | 1997 |
|
RU2117528C1 |
Изобретение относится к способам получения катализаторов на основе меди и цинка для процесса низкотемпературной паровой конверсии оксида углерода. Способ состоит в смешении цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формовании гранул катализатора с последующей термообработкой. При смешении компонентов катализатора дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов, причем общее содержание дополнительной добавки не более 2,0 мас.%. Технический результат заключается в повышении термостабильности катализатора при сохранении высокой активности и прочности. 1 з.п. ф-лы, 2 табл.
СПОСОБ ПРИГОТОВЛЕНИЯ МЕДЬЦИНКМАРГАНЦЕВОГО КАТАЛИЗАТОРА | 1989 |
|
RU1732537C |
Катализатор для химических процессов, например,для синтеза метанола | 1974 |
|
SU570392A1 |
Способ получения медно-цинкового катализатора для конверсии окиси углерода | 1976 |
|
SU732002A1 |
СПОСОБ ОЧИСТКИ ХВОСТОВЫХ ГАЗОВ ОТ ОКИСЛОВ АЗОТА | 1995 |
|
RU2100060C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПАРОВОЙ КОНВЕРСИИ ОКСИДА УГЛЕРОДА | 1986 |
|
RU1380003C |
СПОСОБ ВЫРАБОТКИ НЕКУРИТЕЛЬНОГО ИЗДЕЛИЯ ИЗ МАХОРКИ | 2011 |
|
RU2441420C1 |
ВСЕСОЮЗНАЯ i ПАЯНТНО-ТЕХНИЧЕСНя'; | 0 |
|
SU296734A1 |
Способ полимеризации полярных виниловых мономеров | 1974 |
|
SU528305A1 |
Авторы
Даты
2000-10-10—Публикация
1999-12-17—Подача