СПОСОБ ИММОБИЛИЗАЦИИ МОДИФИЦИРОВАННЫХ НЕПРЕДЕЛЬНЫМИ ФРАГМЕНТАМИ ОЛИГОНУКЛЕОТИДОВ ПУТЕМ СОПОЛИМЕРИЗАЦИИ Российский патент 2000 года по МПК C07H21/00 C08F220/56 G01N33/50 C12Q1/68 

Описание патента на изобретение RU2157377C1

Изобретение относится к молекулярной биологии и биотехнологии, а точнее к способу иммобилизации олигонуклеотидов в органических полимерных гелях, получаемых сополимеризацией непредельных мономеров, где в качестве одного из мономеров служат олигонуклеотиды, модифицированные непредельными фрагментами. Изобретение может найти применение при секвенировании и картировании ДНК, в генетическом анализе, детектировании мутаций, в медицине и для других приложений.

Известный способ иммобилизации олигонуклеотидов в органических гелях [Rehman F.N., Audeh М., Abrams E.S., Hammond P.W., Boles T.C., Nucleic Acids Res., 27 (1999) 649-655] состоит в сополимеризации модифицированных непредельными группами олигонуклеотидов с акриламидом и N,N'- метиленбисакриламидом. Синтез соответствующих олигонуклеотидов осуществляется с использованием фосфорамидита AcryditeTM, производимого фирмой "Mosaic Technologies". Этот продукт позволяет вводить по 5'- положению олигонуклеотида акриламидный фрагмент.

В соответствии с этим способом иммобилизация олигонуклеотидов, модифицированных с помощью фосфорамидита AcryditeTM, в полиакриламидном геле проводится путем сополимеризации акриламида, N,N'-метиленбисакриламида и модифицированного олигонуклеотида под действием катализаторов - персульфата аммония и тетраметилэтилендиамина.

Недостатками этого способа иммобилизации являются следующие.

Стабильность акриламидных производных олигонуклеотидов, определяемая стабильностью акриламидного фрагмента, невысока. В то же время для изготовления олигонуклеотидных микрочипов необходимо содержать библиотеку модифицированных олигонуклеотидов и часто ее использовать. Это означает проведение многочисленных циклов заморозки - разморозки растворов олигонуклеотидов и заметное время их выдерживания при комнатной температуре. Известно, что растворы акриламида в буферных растворах легко подвергаются самопроизвольной полимеризации при комнатной температуре. Таким образом, наличие реакционноспособного и малостабильного акриламидного фрагмента в составе олигонуклеотидов заметно сужает область возможных применений данного метода иммобилизации.

Другим недостатком известного способа является ограничение в положении модификации олигонуклеотидов. Введение акриламидного звена с помощью реагента AcryditeTM возможно лишь по 5'-концевому положению, тогда как в большом числе случаев требуется провести модификацию этого положения какой либо другой группой, например, флуоресцентным красителем.

В основу предлагаемого изобретения положена задача повышения устойчивости олигонуклеотидов, модифицированных непредельными группами, способными к сополимеризации с акриламидом и N,N'-метиленбисакриламидом, и реализация возможности введения таких реакционноспособных групп в любое заранее заданное положение олигонуклеотидной цепи.

Поставленная задача решена тем, что в заявляемом способе иммобилизации олигонуклеотидов в органических полимерных гелях методом сополимеризации модифицированных непредельными фрагментами олигонуклеотидов с ненасыщенными мономерами в качестве непредельных фрагментов используют группы общей формулы R1R2C= CR3R4, где R1 и R4 - H или алкил C13; R2 - (CH2)n-O-Х и R3 - (CH2)n-O-Y, n= 1-6; X и Y - фосфодиэфирные группы, связывающие непредельные фрагменты с соседними нуклеотидными звеньями или соседними непредельными фрагментами, или одна из групп X или Y представляет собой атом водорода, которые вводят в синтетический олигонуклеотид в ходе стандартного фосфорамидитного метода с использованием фосфорамидитов общей формулы R5R6C=CR7R8, где R5 - R8 - H или алкил C1-C3; R6 - (CH2)n-O-Р(OCH2CH2CN)(N(C3H7)2)2,
n=1-6; R7 - -(CH2)n-O-DMT, n=1-6 (DMT = 4,4'-диметокситритил).

Указанные фосфорамидиты можно использовать как "строительные блоки" на любой стадии олигонуклеотидного синтеза, т.е. вводить непредельные фрагменты в любое заранее заданное положение олигонуклеотидной цепи. Эти "блоки" получают из непредельных соединений, содержащих гидроксильную группу, реакцией с 2-цианэтил-N, N,N',N'- тетраизопропилфосфорамидитом в ацетонитриле в присутствии 1H- тетразола.

Для предотвращения в ходе олигонуклеотидного синтеза нежелательных реакций по двойной связи непредельного фрагмента стандартный раствор окислителя заменяют на 0,1 М раствор трет-бутилгидропероксида в тетрагидрофуране.

Целесообразно в качестве одного из мономеров при сополимеризации использовать акриламид.

Способ иммобилизации олигонуклеотидов может быть реализован в двух вариантах:
1) путем фотоинициируемой сополимеризации, при которой смесь непредельных мономеров, включая модифицированный олигонуклеотид, содержащую все необходимые добавки, такие как TEMED, глицерин и другие компоненты, подвергают воздействию УФ или видимого света, в результате чего происходит полимеризация.

При использовании данного способа иммобилизации, например, для изготовления олигонуклеотидных матриц, фотоинициируемая сополимеризация проводится между двумя стеклами, одно из которых служит маской. Маска может быть изготовлена из обычного или кварцевого стекла. Формирование гелевой ячейки с иммобилизованным олигонуклеотидом происходит лишь в зонах, соответствующих прозрачным окошкам в маске. При этом топология микроматрицы соответствует расположению окошек на маске. Иммобилизация индивидуального олигонуклеотида в каждой отдельной ячейке достигается либо путем физического разделения зон полимеризации, либо путем последовательного проведения циклов сополимеризации отдельных олигонуклеотидов;
2) путем химически индуцируемой сополимеризации смеси непредельных мономеров под действием системы персульфат аммония - TEMED.

Изготовление микроматриц с помощью химически индуцируемой сополимеризации проводится следующим образом. Смеси непредельных мономеров, содержащих индивидуальные олигонуклеотиды и другие необходимые компоненты, кроме одного (например TEMED), распределяются в виде микрокапель по поверхности стекла или другой поверхности с помощью какого либо наносящего устройства. Таким устройством может являться микропипетка, пиновый наноситель, струйный принтер или другое устройство. После формирования матрицы растворов мономеров стекло погружается в раствор органического растворителя, содержащий компонент, необходимый для инициирования полимеризации (TEMED). Органический растворитель не смешивается с растворами мономеров, препятствуя таким образом возможному перемешиванию растворов с различными олигонуклеотидами.

Заявляемый способ иммобилизации пригоден для использования в изготовлении полиакриламидных олигонуклеотидных микроматриц с размерами ячеек от 5 микрон.

Предлагаемое изобретение поясняется следующими фигурами и примерами, где
на фиг. 1 представлена схема синтеза одного из фосфорамидитов, используемого в качестве "строительного блока" для синтеза модифицированных непредельными группами олигонуклеотидов,
на фиг. 2 - схема фотоинициируемой или химически индуцируемой иммобилизации олигонуклеотидов,
на фиг. 3 - использование иммобилизованных с помощью фотоинициируемой сополимеризации олигонуклеотидов для гибридизации,
на фиг. 4 - использование иммобилизованного с помощью химически индуцируемой сополимеризации олигонуклеотида для гибридизации.

Пример 1. Синтез фосфорамидита О-диметокситритилбут-2-ен-1,4-диола.

К раствору 5 ммолей бут-2-ен-1,4-диола в 50 мл пиридина добавляют 1 ммоль 4,4'-диметокситритилхлорида при перемешивании. Ход реакции контролируют с помощью ТСХ в системе хлороформ- метанол-гексан (9:1:10). По завершении реакции пиридин упаривают, к остатку добавляют толуол и упаривают снова. Вязкую массу растворяют в хлороформе и промывают водой. Хлороформенный раствор сушат сульфатом натрия и упаривают. Остаток очищают хроматографией на силикагеле. Выход продукта после очистки составляет 80%. Монозащищенный диол (0.5 ммоля) растворяют в 2 мл безводного ацетонитрила и добавляют 1 экв. 1H-тетразола и 1.1 экв. 2-цианэтил-N,N,N'N'-тетраизопропилфосфорамидита. Ход реакции контролируют с помощью ТСХ в системе хлороформ-метанол-гексан (9: 1:10). По завершении реакции реакционную смесь разбавляют этилацетатом до 100 мл и последовательно промывают водным раствором бикарбоната натрия и водой. Органический слой сушат сульфатом натрия и упаривают. Выход целевого продукта составляет 90%. Схема синтеза показана на фиг. 1.

Пример 2. Фотоинициируемая сополимеризация модифицированных олигонуклеотидов.

Раствор мономеров для сополимеризации содержит 5% смеси акриламид-N, N'-метиленбисакриламид (19:1), 40% глицерина, 0,1 М натрий-фосфатный буфер, pH 7.0, 1.2% TEMED, 0.002% метиленового синего и 0.3 мМ раствор олигонуклеотида, модифицированного непредельной группой (0.2 мкл). Полимеризацию проводят в УФ-печи (Stratalinker 1800-UV) при облучении светом 254 нм (фиг. 2).

Сополимеризацию используют для изготовления микроматрицы с размером ячеек 500 микрон. После каждого цикла сополимеризации стекло с приполимеризованными ячейками промывают водой в течение 5 мин. Затем меняют маску и раствор олигонуклеотида и повторяют полимеризационный цикл. Маска имеет только одно квадратное окно в разных положениях по отношению к матрице. Контроль иммобилизации осуществляют, наблюдая связывание комплементарных флуоресцентно меченных олигонуклеотидов (фиг. 3).

Пример 3. Химически индуцируемая сополимеризация модифицированных олигонуклеотидов.

Капли раствора, содержащего 5% смеси акриламид-N,N'- метиленбисакриламид (19: 1), 0.1 М натрий-фосфатный буфер, pH 7.0, 40% глицерина, 0.05% персульфата аммония и 0.3 мМ олигонуклеотида, модифицированного непредельными фрагментами (0.2 мкл), наносят микродозатором на поверхность стекла. Стекло предварительно обрабатывают 13-(триэтоксисилил)пропил]метакрилатом. Сформированную матрицу растворов погружают в 80 мл 0.5% раствора TEMED в гексане. Полимеризация обычно занимает 1 час при комнатной температуре. После этого микроматрицу отмывают водой в течение 1 часа при 60oC и высушивают (фиг. 2). Контроль иммобилизации осуществляют, наблюдая связывание комплементарного флуоресцентно меченного олигонуклеотида (фиг. 4).

Похожие патенты RU2157377C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОЧИПОВ НА ОСНОВЕ ОЛИГОНУКЛЕОТИДОВ 1999
  • Мирзабеков А.Д.
  • Тимофеев Э.Н.
RU2157385C1
СПОСОБ ИММОБИЛИЗАЦИИ ОЛИГОНУКЛЕОТИДОВ, СОДЕРЖАЩИХ НЕПРЕДЕЛЬНЫЕ ГРУППЫ, В ПОЛИМЕРНЫХ ГИДРОГЕЛЯХ ПРИ ФОРМИРОВАНИИ МИКРОЧИПА 1999
  • Мирзабеков А.Д.
  • Рубина А.Ю.
  • Паньков С.В.
  • Чернов Б.К.
RU2175972C2
КОМПОЗИЦИЯ ДЛЯ ИММОБИЛИЗАЦИИ БИОЛОГИЧЕСКИХ МАКРОМОЛЕКУЛ В ГИДРОГЕЛЯХ, СПОСОБ ПРИГОТОВЛЕНИЯ КОМПОЗИЦИИ, БИОЧИП, СПОСОБ ПРОВЕДЕНИЯ ПЦР НА БИОЧИПЕ 2001
  • Мирзабеков А.Д.
  • Рубина А.Ю.
  • Паньков С.В.
  • Перов А.Н.
  • Чупеева В.В.
RU2206575C2
СПОСОБ ПОЛИМЕРИЗАЦИОННОЙ ИММОБИЛИЗАЦИИ БИОЛОГИЧЕСКИХ МАКРОМОЛЕКУЛ И КОМПОЗИЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Мирзабеков А.Д.
  • Рубина А.Ю.
  • Паньков С.В.
RU2216547C2
ПРИМЕНЕНИЕ НЕМОДИФИЦИРОВАННЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ ДЛЯ ИЗГОТОВЛЕНИЯ ПОДЛОЖКИ БИОЧИПОВ, БИОЧИП НА ИХ ОСНОВЕ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ, СПОСОБ ИММОБИЛИЗАЦИИ ГИДРОГЕЛЕЙ НА НЕМОДИФИЦИРОВАННЫХ ПОЛИМЕРНЫХ МАТЕРИАЛАХ 2006
  • Паньков Сергей Васильевич
  • Крейндлин Эдуард Яковлевич
  • Сомова Ольга Георгиевна
  • Моисеева Ольга Владимировна
  • Барский Виктор Евгеньевич
  • Заседателев Александр Сергеевич
RU2309959C1
СПОСОБ ЧАСТИЧНОГО СЕКВЕНИРОВАНИЯ ДНК ДЛЯ ОПРЕДЕЛЕНИЯ МУТАЦИЙ В КОРОТКИХ ФРАГМЕНТАХ ОДНОЦЕПОЧЕЧНОЙ ДНК С ИСПОЛЬЗОВАНИЕМ МИКРОЧИПА 2001
  • Мирзабеков А.Д.
  • Василисков В.А.
  • Стомахин А.А.
RU2206615C1
СПОСОБ ИНТЕГРАЦИИ МНОЖЕСТВЕННЫХ ПОЛИМЕРАЗНЫХ РЕАКЦИЙ АМПЛИФИКАЦИИ С ПОСЛЕДУЮЩИМ АНАЛИЗОМ АМПЛИФИЦИРОВАННЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ НЕПОСРЕДСТВЕННО НА БИОЧИПЕ 2001
  • Мирзабеков А.Д.
  • Тиллиб С.В.
  • Стрижков Б.Н.
RU2218414C2
РЕАГЕНТЫ ДЛЯ ВНУТРЕННЕГО ФЛУОРЕСЦЕНТНОГО КОНТРОЛЯ ПРИ ОПРЕДЕЛЕНИИ ГЕНОТИПА И ПОДТИПА ВИРУСА ГЕПАТИТА С НА ОЛИГОНУКЛЕОТИДНОМ МИКРОЧИПЕ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2008
  • Тимофеев Эдуард Николаевич
  • Чудинов Александр Васильевич
  • Грядунов Дмитрий Александрович
  • Заседателев Александр Сергеевич
RU2382047C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЧЕЧНЫХ НУКЛЕОТИДНЫХ ЗАМЕН В ДНК МИКОБАКТЕРИЙ, СПОСОБ ДИАГНОСТИКИ УСТОЙЧИВОСТИ МИКОБАКТЕРИЙ К РИФАМПИЦИНУ, БИОЧИП ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТИХ СПОСОБОВ 2000
  • Мирзабеков А.Д.
  • Михайлович В.М.
  • Соболев А.Ю.
  • Грядунов Д.А.
  • Лапа С.А.
RU2175015C1
СПОСОБ АНАЛИЗА ГЕНЕТИЧЕСКОГО ПОЛИМОРФИЗМА, ОПРЕДЕЛЯЮЩЕГО ПРЕДРАСПОЛОЖЕННОСТЬ К ОНКОЛОГИЧЕСКИМ ЗАБОЛЕВАНИЯМ И ИНДИВИДУАЛЬНУЮ ЧУВСТВИТЕЛЬНОСТЬ К ФАРМАЦЕВТИЧЕСКИМ ПРЕПАРАТАМ С ИСПОЛЬЗОВАНИЕМ ОЛИГОНУКЛЕОТИДНОГО БИОЛОГИЧЕСКОГО МИКРОЧИПА (БИОЧИПА) 2005
  • Заседателев Александр Сергеевич
  • Наседкина Татьяна Васильевна
  • Глотов Андрей Сергеевич
RU2303634C2

Иллюстрации к изобретению RU 2 157 377 C1

Реферат патента 2000 года СПОСОБ ИММОБИЛИЗАЦИИ МОДИФИЦИРОВАННЫХ НЕПРЕДЕЛЬНЫМИ ФРАГМЕНТАМИ ОЛИГОНУКЛЕОТИДОВ ПУТЕМ СОПОЛИМЕРИЗАЦИИ

Изобретение относится к молекулярной биологии и биотехнологии, а точнее к способу иммобилизации олигонуклеотидов в органических полимерных гелях. Изобретение может найти применение при секвенировании и картировании ДНК, в генетическом анализе, детектировании мутаций, в медицине и для других приложений. Описывается способ иммобилизации олигонуклеотидов в органических полимерных гелях методом сополимеризации модифицированных непредельными фрагментами олигонуклеотидов с ненасыщенными мономерами, причем в качестве непредельного фрагмента олигонуклеотида используется одна или несколько групп общей формулы R1R2C=СR3R4, где R1 и R4 - H или алкил C1-C3; R2 - (CH2)n-O-X и R3 - (CH2)n-O-Y, n = 1 - 6; X и Y - фосфодиэфирные группы, связывающие непредельные фрагменты с соседними нуклеотидными звеньями или соседними непредельными фрагментами, или одна из групп X или Y представляет собой атом водорода, которые вводят в олигонуклеотид в ходе стандартного фосфорамидитного олигонуклеотидного синтеза с использованием фосфорамидитов общей формулы R5R6C = CR7R8, где R5 и R8 - H или алкил C1-C3; R6 - (CH2)n-O-P(OCH2CH2CN)(N(C3H7)2)2, n = 1 - 6; R7 - -(CH2)n-O-DMT, n = 1 - 6 (DMT = 4,4'-диметокситритил). Технический результат - повышение устойчивости олигонуклеотидов, модифицированных непредельными группами, способными к сополимеризации с акриламидом и N,N'-метиленбисакриламидом, и реализация возможности введения таких реакционноспособных групп в любое заранее заданное положение олигонуклеотидной цепи. 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 157 377 C1

1. Способ иммобилизации олигонуклеотидов в органических полимерных гелях методом сополимеризации модифицированных непредельными фрагментами олигонуклеотидов с ненасыщенными мономерами, отличающийся тем, что в качестве непредельного фрагмента олигонуклеотида используется одна или несколько групп общей формулы R1R2С=СR3R4, где R1 и R4 - Н или алкил С13; R2 - (СН2)n-О-Х и R3 - (СН2)n-О-Y, n = 1 - 6, Х и Y - фосфордиэфирные группы, связывающие непредельные фрагменты с соседними нуклеотидными звеньями или соседними непредельными фрагментами, или одна из групп Х или Y представляет собой атом водорода, которые вводят в олигонуклеотид в ходе стандартного фосфорамидитного олигонуклеотидного синтеза с использованием фосфорамидитов общей формулы R5R6С = СR7R8, где R5 и R8 - Н или алкил С13; R6 - (СН2)n-О-Р(ОСН2СН2СN)(N(С3Н7)2)2, n = 1 - 6; R7 - -(СН2)n-О-DMТ, n = 1 - 6 (DMТ= 4,4'-диметокситритил). 2. Способ по п.1, отличающийся тем, что в качестве одного из ненасыщенных мономеров используют акриламид. 3. Способ по п.1, отличающийся тем, что иммобилизация проводится путем фотоиницируемой сополимеризации. 4. Способ по п.1, отличающийся тем, что иммобилизация проводится путем химически индуцируемой сополимеризации.

Документы, цитированные в отчете о поиске Патент 2000 года RU2157377C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Дорожная спиртовая кухня 1918
  • Кузнецов В.Я.
SU98A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
US 5981734 А, 09.11.1999
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
US 5412087 А, 02.05.1995
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
ВАСИЛИСКОВ В.А
и др
Метод получения микрочипов с помощью сополимеризации с акриламидом
Молекулярная биология
Способ и аппарат для получения гидразобензола или его гомологов 1922
  • В. Малер
SU1998A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
US 5837860 А, 17.11.1998.

RU 2 157 377 C1

Авторы

Мирзабеков А.Д.

Тимофеев Э.Н.

Василисков В.А.

Даты

2000-10-10Публикация

1999-07-19Подача