Изобретение относится к металлургии и может быть использовано при производстве слитков из металлов и сплавов.
Известен способ виброимпульсной обработки кристаллизующегося металла, заключающийся в воздействии на него электрогидравлических ударов, вводимых в металл через дно изложницы или через ее стенки [1]. В результате обработки повышается физическая однородность литого металла и измельчается его структура, но химическая неоднородность /зональная ликвация/ при этом не устраняется.
Наиболее близким аналогом заявляемого способа является известный способ виброимпульсной обработки металла, включающий воздействие на металл акустическими ударами, создаваемыми в электрогидравлической разрядной камере и вводимыми в металл электродом-волноводом [2]. Этот способ позволяет увеличить амплитуду вводимых в металл упругих колебаний и повысить тем самым эффективность их воздействия на процесс кристаллизации, благодаря чему возрастают дисперсность и физическая однородность структуры литого металла.
Однако химическая неоднородность металла /зональная ликвация/ сохраняется и при этом способе обработки, поскольку применяемое в нем виброимпульсное воздействие не может подавить процесс разделительной диффузии, протекающий на межфазной границе при затвердевании слитка и приводящий к неравномерному распределению ликвирующих примесей по сечению слитка.
Заявляемое изобретение направлено на решение задачи повышения физико-химических свойств металла путем устранения его химической неоднородности в процессе затвердевания слитков. Для решения этой задачи в известном способе виброимпульсной обработки металла, включающем воздействие на металл акустическими ударами, создаваемыми в электрогидравлической разрядной камере и вводимыми в металл электродом-волноводом, одновременно пропускают через залитый в изложницу металл однополярный импульсный электрический ток с частотой следований импульсов 1-5 Гц, причем величина удельной энергии в импульсе составляет 0,4 - 1,0 кДж на тонну обрабатываемого металла при собственной частоте разрядного тока 20 - 80 кГц.
Устранение зональной химической неоднородности /ликвации/ при пропускании через металл однополярных импульсов электрического тока происходит в результате охлаждающего действия на фронте кристаллизации термоэлектрического эффекта Пельтье, создающего глубокое переохлаждение на межфазной границе и соответствующее резкое увеличение скорости кристаллизации. При этом возникает периодический захват твердой фазой ликвирующей примеси, скапливающейся в процессе избирательной кристаллизации в жидкой фазе перед границей раздела. В результате этого примесь равномерно распределяется по сечению слитка и локально не скапливается в какой-либо структурной его зоне.
Измельчение зерна и однородность структуры металла достигаются в предлагаемом способе благодаря вибрационному и ударному воздействиям на металл в процессе его кристаллизации. В установленной на изложнице электроразрядной камере производят высоковольтный импульсный разряд в воде, при котором практически несжимаемая жидкость с огромной скоростью раздвигается от линии разряда, создавая полость кавитации и гидравлический удар. Затем полость смыкается, создавая второй - кавитационный удар. Этот цикл повторяется с частотой следования импульсов тока.
Созданные в разрядной камере электрогидравлические удары через электрод-волновод с насадкой передаются в расплав, вызывая в нем интенсивные упругие колебания. Возникающие при этом гидропотоки и знакопеременные давления разрушают растущие дендриты, вымывают их обломки в сторону оси слитка, устраняя таким образом зону транскристаллизации и создавая дополнительные центры кристаллизации, что приводит к измельчению зерна и выравниванию структуры литого металла.
Погружаемый в металл конец электрода-волновода с насадкой может в зависимости от степени перегрева металла перед разливкой либо оплавиться /или полностью расплавиться/, либо покрыться коркой затвердевшего металла и сплавиться со слитком. В первом случае может произойти загрязнение металла материалом электрода-волновода, а во втором случае возникнет необходимость в замене поршня разрядной камеры, являющегося продолжением вмерзшего электрода-волновода. Поэтому часть электрода-волновода, погружаемую в металл, целесообразно по технологическим соображениям выполнять разъемной и изготовлять из металла того же химического состава, что и обрабатываемый металл.
На чертеже приведена схема устройства, реализующего описываемый способ, в которой приняты следующие обозначения: 1 - обрабатываемый металл; 2 - чугунная изложница; 3 - прибыльная часть изложницы; 4 - электроразрядная камера; 5 - электрод-волновод; 6 - насадка; 7 - генератор импульсов тока; 8 - внешняя электрическая цепь; 9 и 10 - электроды; 11 - центральный выступ поршня; 12 - поршень; 13 и 14 - изоляционные прокладки.
После наполнения металлом 1 изложницы 2 на ее прибыльную часть 3 устанавливают электроразрядную камеру 4 и погружают в жидкий металл электрод-волновод 5 с насадкой 6. Затем от генератора импульсов тока 7 по внешней электрической цепи 8 на электроды 9 и 10 подают высокое напряжение. В разрядном промежутке камеры 4, заполненной водой, возникает пробой между электродом 9 и центральным выступом 11 поршня 12. Пробой создает гидравлический и кавитационный удары, передающиеся через электрод-волновод 5 с насадкой 6 затвердевающему металлу 1. Кроме того, через образовавшийся в результате пробоя токопроводящий канал импульс тока подводится к металлу электродами 5 и 10 /через токопроводящую изложницу 2/ и вызывает глубокое переохлаждение металла на фронте кристаллизации. В целях электробезопасности и для исключения электрической цепи, параллельной металлу, изложницу 2 с ее прибыльной частью 3 отделяют от окружающего оборудования изолирующими прокладками 13 и 14.
Предлагаемый способ обработки металла был испытан на 16 экспериментальных плавках при отливке коррозионностойкой стали аустенитного класса 08Х18Н10Т в слитки массой 25 кг. Оптимальный режим обработки определяли в 3 сериях плавок /по 5 плавок в каждой/; для сравнения провели также 1 контрольную плавку без обработки. В первой серии изменяли параметр, определяющий для электроимпульсной обработки собственную частоту тока, во второй серии параметр, определяющий для виброимпульсной обработки удельную энергию в импульсе, а в третьей серии изменяли оба этих режимных параметра.
Исследование слитков на структурную неоднородность проводили на протравленных макрошлифах, на химическую неоднородность - по результатам спектрального анализа поперечных темплетов, вырезанных на уровне половины высоты слитка. Показатели эффективности обработки определяли по отношению к варианту без воздействий.
Обработку металла проводили в течение всего времени кристаллизации расплава до полного затвердевания слитка. Импульсный ток для обработки подводили от лабораторного релаксационного генератора RC типа.
Результаты испытаний сведены в таблицу 1.
Как видно из таблицы, оптимальным режимом обработки, обеспечивающим наибольшее снижение параметров структурной и химической неоднородности металла, является режим, при котором удельная энергия импульса тока находится в пределах 0,4 - 1,0 кДж на тонну, а собственная частота тока, определяющая крутизну возрастания тока в импульсе, - в пределах 20 - 80 кГц.
При величине удельной энергии в импульсе ниже 0,4 кДж/т ее недостаточно для разрушения формирующейся дендритной структуры /т.е. для измельчения структуры слитка/, а при величине энергии выше 1,0 кДж/т эффект от увеличения силы акустических ударов растет незначительно, но существенно возрастают энергетические затраты.
Снижение собственной частоты разрядного тока ниже 20 кГц приводит к значительному уменьшению крутизны возрастания тока в импульсе, вследствие чего не достигается необходимого переохлаждения за счет эффекта Пельтье на границе раздела фаз. При больших частотах тока /выше 80 кГц/ существенно снижается его амплитуда из-за высокого индуктивного сопротивления разрядной цепи генератора, что также приводит к уменьшению переохлаждения на межфазной границе металла.
Для сталей, менее подверженных транскристаллизации, чем исследованная нержавеющая сталь, эффективность обработки предлагаемым способом может оказаться еще выше.
Литература:
1. Авторское свидетельство N 519899, кл. B 22 D 27/08.
2. Авторское свидетельство N 1764249, кл. B 22 D 27/08.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАГНИТОТВЁРДЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2003 |
|
RU2238985C1 |
СПОСОБ БЕСТИГЕЛЬНОГО ЭЛЕКТРОДУГОВОГО ЖИДКОФАЗНОГО ВОССТАНОВЛЕНИЯ ЖЕЛЕЗА ИЗ ОКСИДНОГО СЫРЬЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2486259C1 |
ВАКУУМНАЯ ИНДУКЦИОННАЯ ПЕЧЬ | 1992 |
|
RU2033589C1 |
СПЛАВ | 2002 |
|
RU2215814C1 |
СПОСОБ ЛИТЬЯ КОЛЬЦЕВЫХ ЗАГОТОВОК ИЗ АЛЮМИНИЕВЫХ ИЛИ МАГНИЕВЫХ СПЛАВОВ | 2021 |
|
RU2762692C1 |
Способ получения слитков | 1989 |
|
SU1671407A1 |
ЦИНКОВЫЙ АККУМУЛЯТОР | 2008 |
|
RU2359369C1 |
Способ обработки кристаллизующихся слитков | 1979 |
|
SU910325A1 |
Способ обработки расплава металла иуСТРОйСТВО для ЕгО ОСущЕСТВлЕНия | 1979 |
|
SU836132A1 |
УСТРОЙСТВО ДЛЯ ВИБРОИМПУЛЬСНОЙ ОБРАБОТКИ РАСПЛАВЛЕННОГО МЕТАЛЛА | 1990 |
|
SU1764249A1 |
Изобретение относится к металлургии и может быть использовано при производстве слитков из металлов и сплавов. На металл, находящийся в изложнице, воздействуют акустическими ударами. Удары создаются в установленной на изложнице электрогидравлической разрядной камере и передаются в металл с помощью разъемного электрода-волновода, изготовленного из металла, аналогичного по химическому составу обрабатываемому металлу. Одновременно через залитый в изложницу металл пропускают однополярный импульсный электрический ток с частотой следования импульсов 1-5 Гц. Величина удельной энергии в импульсе составляет 0,4-1,0 кДж на тонну обрабатываемого металла при собственной частоте разрядного тока 20-80 кГц. Обработка приводит к устранению зональной ликвации, к измельчению и повышению однородности структуры литого металла. 1 з.п. ф-лы, 1 ил.,1 табл.
УСТРОЙСТВО ДЛЯ ВИБРОИМПУЛЬСНОЙ ОБРАБОТКИ РАСПЛАВЛЕННОГО МЕТАЛЛА | 1990 |
|
SU1764249A1 |
УСТРОЙСТВО ДЛЯ ВИБРОИМПУЛЬСНОЙ ОБРАБОТКИ РАСПЛАВЛЕННОГО МЕТАЛЛА | 1979 |
|
SU784093A1 |
Способ виброимпульсного воздействия на расплав | 1975 |
|
SU519899A1 |
Устройство для возбуждения вибрации расплава | 1979 |
|
SU884851A1 |
Авторы
Даты
2001-01-20—Публикация
1999-06-07—Подача