СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОЙ ПОВРЕЖДАЕМОСТИ МАТЕРИАЛА ПРИ ЦИКЛИЧЕСКОМ НАГРУЖЕНИИ Российский патент 2001 года по МПК G01N3/00 G01N3/32 

Описание патента на изобретение RU2170917C1

Изобретение относится к области анализа свойств материалов по измерению физических характеристик образцов материала, а именно к области исследования повреждаемости материалов, способам определения характеристик сопротивления материалов усталостному разрушению, и может использоваться для определения остаточного ресурса изделий, для прогноза ресурса изделий при проектировании и для определения изменения изгибной жесткости деталей под воздействием циклических нагрузок.

Известен способ использования регистрации прогиба образца для изучения процесса усталости (Я. С. Сегал. Использование регистрации прогиба образца для изучения процесса усталости. Сб.: Прочность металлов при циклических нагрузках. Материалы IV совещания по усталости металлов, 14-17 марта 1966 г. М. : Наука, 1967, с.66-71). При этом регистрируемый параметр (прогиб) используется для изучения характеристики, наиболее полно отражающей существо происходящих изменений - величины энергии, затраченной на необратимые изменения кристаллической решетки материала. Особенность данной методики составляет оценка только энергии, необратимо поглощенной материалом до разрушения DN = P • (fN - fb), где P - сила, нагрузка на образец; fN - прогиб образца в момент разрушения через N циклов нагружения; fb - прогиб образца в момент начала быстрого увеличения прогиба до разрушения, предложенный как признак появления усталостной трещины. Для оценки развития разрушения предложено использовать разрушенный объем материала, оцениваемый по данным кривой прогиба: Vn = Dn/Lпл = P•(fn - fb)/Lпл, где Dn - энергия, необратимо поглощенная материалом через n циклов нагружения; fn - прогиб образца через n циклов нагружения; Lпл - величина удельной энергии, поглощение которой предельно искаженной решеткой приводит к нарушению междуатомных связей - разупрочнению.

Недостатком способа является необходимость определения параметра Lпл и сложность экстраполяции результатов исследования образцов материала на работу деталей из данного материала в реальных условиях.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ определения повреждаемости нагруженного материала, защищенный патентом Российской Федерации N RU 2077046, кл. G 01 N 3/00, опубликован 10.04.97.

Способ определения повреждаемости нагруженного материала включает определение характерных параметров повреждаемости и оценку меры повреждения материала расчетным путем, основанный на измерении количества трещин, образующихся в нагруженном материале за определенное время, построении зависимости числа трещин от времени и экстраполяции этой зависимости на заданный момент времени. На указанный момент времени по предлагаемому способу оценивают меру повреждения, измеряют среднюю длину трещин и объем области трещинообразования, рассчитывают предельное число трещин, а меру повреждения материала в заданный момент времени определяют как вероятность образования кластера из заданного числа начальных трещин, вычисленную на основе измерения средней длины трещин в заданный момент времени, объема области трещинообразования и рассчитанного предельного числа трещин.

Недостатком известного способа является необходимость измерения числа трещин в исследуемом объекте, а также необходимость измерения средней длины трещин и объема области трещинообразования. При этом, как отмечает автор известного способа, диагностика одного объекта не гарантирует подобия характеристик разрушения аналогичных объектов в связи с наличием индивидуальных дефектов изготовления. Вышеуказанные причины затрудняют экстраполяцию результатов исследования одного объекта даже на другие аналогичные объекты, в некоторых случаях способ сложно или практически невозможно применить, а результат применения способа оказывается недостаточно точен.

Задача, решаемая предлагаемым изобретением, - создание способа определения характеристик критической повреждаемости материала. Технический результат от использования изобретения заключается в упрощении исследований материала изделий и повышении точности результатов благодаря получению результатов экспериментов на образцах материала и изделиях в сопоставимой форме. Кроме того, использование предлагаемого способа позволяет применить результаты испытаний образцов материала на усталостную прочность для прогноза долговечности и оценки остаточного ресурса изделий независимо от конструктивно-технологических характеристик изделия благодаря использованию в качестве параметра относительного прогиба fт/f0.

Указанный результат достигается тем, что в способе определения критической повреждаемости материала при циклическом нагружении, включающем определение характерных параметров повреждаемости, по результатам испытания образцов материала на изгиб при циклическом нагружении при заданной температуре строят зависимость отношения прогиба в момент начала быстрого увеличения fт к прогибу в начальный момент нагружения при статической нагрузке f0, аппроксимируют полученную зависимость и из уравнения fт/f0 = C • NтВ, где Nт - число циклов нагружения в момент начала быстрого увеличения прогиба, B и C - эмпирические константы материала, определяют меру критической повреждаемости материала изделия fт/f0 при заданной долговечности - числе циклов Nт, а по заданной мере критической повреждаемости fт/f0 определяют долговечность изделия Nт.

Способ осуществляется следующим образом.

Для каждого образца материала получают зависимость прогиба от числа циклов нагружения при заданной температуре. С кривой прогиба образца снимают значения f0, fт и Nт, где f0 - прогиб в начальный момент времени; fт и Nт - прогиб и число циклов (циклическая долговечность) в момент образования трещины критического раскрытия. Этот момент определяется по началу быстрого увеличения прогиба образца.

Далее строят зависимость отношения прогиба в момент начала быстрого увеличения fт к прогибу в начальный момент нагружения при статической нагрузке f0 от числа циклов нагружения Nт в логарифмических координатах, аппроксимируют полученную зависимость для серии образцов линейной функцией вида: lg(fт/f0) = B • lgNт + lgC, где B и C - искомые эмпирические константы материала.

Из уравнения fт/f0 = C • NтВ определяют меру критической повреждаемости материала изделия fт/f/0 при заданной долговечности - числе циклов Nт. По заданной мере критической повреждаемости fт/f0 определяют долговечность изделия Nт до образования трещины критического раскрытия.

Пример реализации способа
Были использованы цилиндрические образцы стали 40Х тип I (ГОСТ 25.502-79) после различных технологий обработки. Например: правка; нитроцементация (190-200oC) на слой 0,4-0,65 мм, твердость 58-60 HRC; нитроцементация с последующей правкой; нитроцементация, последующая правка, затем дробеструйная обработка; нитроцементация и закалка.

Кривые прогибов образцов при испытании на консольный изгиб с вращением (50 Гц) в нормальных условиях (комнатная температура, воздух) приведены на фиг. 1 - 11. Результаты экспериментов - значения f0, fт, Nт, lg(fт/f0) и lg(Nт) сведены в таблицу. На фиг. 12 приведены значения lg(fт/f0) и lg(Nт), аппроксимированные линейной функцией lg(fт/f0) = -0,0759 • lgNт + 0,5732 с коэффициентом корреляции r = 0,96. Это соответствует уравнению критической повреждаемости при циклическом нагружении fт/fo= 3,7428•N-0,0759т

или Nт= 3564500•(fт/fo)-13,175.

При заданной долговечности Nт = 1•106 циклов, мера критической повреждаемости материала изделия fт/f0 = 1,31. При заданной мере критической повреждаемости fт/f0 = 1,38, долговечность до образования трещины критического раскрытия Nт = 5,12 • 105.

Использование предлагаемого способа позволяет применить результаты испытаний образцов материала на усталостную прочность для прогноза долговечности и оценки остаточного ресурса изделий независимо от конструктивно-технологических характеристик изделий благодаря использованию в качестве параметра критической повреждаемости материала относительного прогиба fт/f0.

Похожие патенты RU2170917C1

название год авторы номер документа
СПОСОБ ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА РАБОТЫ ДЕТАЛИ 2000
  • Гусляков Д.С.
  • Гуслякова Г.П.
  • Корнев А.Б.
RU2170918C1
СПОСОБ ДИАГНОСТИКИ НАЛИЧИЯ ТРЕЩИНЫ В ДЕТАЛИ 2000
  • Корнев А.Б.
  • Гуслякова Г.П.
  • Гусляков Д.С.
RU2173842C1
Способ создания усталостной трещины заданной длины 1989
  • Троенкин Дмитрий Алексеевич
  • Шанявский Андрей Андреевич
  • Максакова Галина Георгиевна
SU1730562A1
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСНЫХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ 2005
  • Громаковский Дмитрий Григорьевич
  • Дынников Андрей Вадимович
  • Ибатуллин Ильдар Дугласович
  • Прилуцкий Ванцетти Александрович
RU2282174C1
СПОСОБ ИСПЫТАНИЯ ТРУБНЫХ СТАЛЕЙ НА КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ ПОД НАПРЯЖЕНИЕМ 2015
  • Арабей Андрей Борисович
  • Ряховских Илья Викторович
  • Есиев Таймураз Сулейманович
  • Мельникова Анна Валерьевна
RU2582911C1
Способ оценки остаточного ресурса конструкций теплообменного аппарата 2019
  • Спирягин Валерий Викторович
  • Челноков Алексей Викторович
  • Чмыхало Александр Игоревич
  • Панкин Дмитрий Анатольевич
RU2722860C1
Способ прогнозирования параметров усталостного разрушения листовых металлических материалов 2020
  • Гончарова Диана Анатольевна
  • Пачурин Герман Васильевич
  • Филиппов Алексей Александрович
RU2739154C1
Способ повышения работоспособности деталей 1981
  • Пачурин Герман Васильевич
  • Гуслякова Галина Петровна
  • Соколов Лев Дмитриевич
  • Березин Виктор Дмитриевич
  • Преображенская Зинаида Петровна
SU1058747A1
Способ мониторинга в условиях вибрационных испытаний переменной нагруженности и усталостной повреждаемости конструкции беспилотных воздушных судов вертолетного типа 2022
  • Ганяк Олег Иосифович
  • Городниченко Владимир Иванович
  • Шибаев Владимир Михайлович
  • Щербань Константин Степанович
  • Ефанов Дмитрий Евгеньевич
  • Сузанский Дмитрий Николаевич
RU2772086C1
Способ оценки накопления усталостных повреждений 1991
  • Троценко Дмитрий Александрович
  • Давыдов Александр Константинович
  • Качесов Михаил Валентинович
SU1796987A1

Иллюстрации к изобретению RU 2 170 917 C1

Реферат патента 2001 года СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОЙ ПОВРЕЖДАЕМОСТИ МАТЕРИАЛА ПРИ ЦИКЛИЧЕСКОМ НАГРУЖЕНИИ

Изобретение относится к исследованию повреждаемости материалов, а именно к способам определения характеристик сопротивления материалов усталостному разрушению, и может использоваться для определения остаточного ресурса изделий, для прогноза ресурса изделий при проектировании и для определения изменения изгибной жесткости деталей под воздействием циклических нагрузок. Изобретение заключается в том, что по результатам испытания образцов изделия исследуемого материала на изгиб в условиях циклического нагружения при заданной температуре определяют зависимость отношения прогиба в момент начала его быстрого увеличения к прогибу в начальный момент нагружения от числа циклов нагружения в момент начала быстрого увеличения прогиба изделия из исследуемого материала, полученную зависимость аппроксимируют линейной функцией и из полученного при этом уравнения определяют меру критической повреждаемости для изделий из исследуемого материала при заданном числе циклов нагружения. Данное изобретение позволяет упростить процедуру исследования свойств материала изделия, повысить точность результатов исследования, а также применить результаты испытаний образцов материала на усталостную прочность для прогнозирования долговечности и оценки остаточного ресурса изделий независимо от их конструктивно-технологических характеристик. 12 ил., 1 табл.

Формула изобретения RU 2 170 917 C1

Способ определения критической повреждаемости материала при циклическом нагружении, включающий определение характерных параметров повреждаемости, отличающийся тем, что по результатам испытания образцов материала на изгиб при циклическом нагружении при заданной температуре строят зависимость отношения прогиба fт в момент начала его быстрого увеличения к прогибу f0 в начальный момент нагружения при статической нагрузке от числа циклов нагружения Nт на момент начала быстрого увеличения прогиба, аппроксимируют полученную зависимость линейной функцией вида: lg(fт/f0) = B • lgNт + lgC, где В и С - искомые эмпирические константы материала, и из уравнения fт/f0 = C • NтB определяют меру критической повреждаемости материала изделия fт/f0 при заданной долговечности - числе циклов Nт.

Документы, цитированные в отчете о поиске Патент 2001 года RU2170917C1

СПОСОБ ОПРЕДЕЛЕНИЯ ПОВРЕЖДАЕМОСТИ НАГРУЖЕННОГО МАТЕРИАЛА 1993
  • Петров Валентин Алексеевич
RU2077046C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОВРЕЖДАЕМОСТИ НАГРУЖЕННОГО МАТЕРИАЛА И РЕСУРСА РАБОТОСПОСОБНОСТИ 1997
  • Волков Н.И.
  • Коннов В.В.
  • Романченков В.П.
RU2139515C1
Способ определения критических параметров трещиностойкости конструкционных материалов 1990
  • Курилкин Борис Викторович
  • Гадалин Николай Иванович
  • Смеляков Евгений Петрович
  • Тарасов Юрий Леонидович
  • Мягких Валерий Иванович
SU1753336A1
Способ оценки циклической трещиностойкости материалов 1990
  • Романов Александр Никитович
  • Иванова Ольга Викторовна
  • Шипов Борис Федорович
  • Штовба Юрий Константинович
  • Юнин Владимир Михайлович
  • Кудряшов Владимир Гаврилович
SU1798657A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ РАЗРУШЕНИЯ МАТЕРИАЛА 1991
  • Водопьянов В.И.
  • Белов А.А.
  • Лобанов С.М.
RU2009463C1
Способ диагностики ранних проявлений дискинезии желчевыводящих путей у детей в условиях контаминации бензолом 2024
  • Зайцева Нина Владимировна
  • Долгих Олег Владимирович
  • Казакова Ольга Алексеевна
  • Ганич Татьяна Сергеевна
  • Ярома Алеся Вячеславовна
  • Отавина Елена Алексеевна
  • Аликина Инга Николаевна
RU2821553C1

RU 2 170 917 C1

Авторы

Гусляков Д.С.

Гуслякова Г.П.

Корнев А.Б.

Даты

2001-07-20Публикация

2000-04-24Подача