СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРМЕТАНА Российский патент 2002 года по МПК C07C19/08 C07C17/10 

Описание патента на изобретение RU2181352C1

Изобретение относится к области органической химии, в частности к области получения тетрафторметана, применяемого как хладагент для получения низких температур, реагент для сухого травления в электронной промышленности, ингибитор пламени.

Описано получение тетрафторметана каталитическим фторированием тетрахлорметана фтористым водородом в присутствии катализатора эмпирического состава СrО3Р3, приготовленного фторированием гидроокиси хрома при температуре до 600oС. Мольное соотношение CCl4:HF равно 2,92:14,0.

Недостатками указанного способа являются низкий выход тетрафторметана 92,5%, наличие в готовом продукте недофторированных веществ, а именно трифтормонохлорметана, использование катализатора, который предварительно необходимо получить из окиси хрома [патент США N 3752850, oпубл. 14.08.73, нац. кл. 260-544F], что усложняет технологическую схему процесса в целом.

Известен также способ производства тетрафторметана совместным сжиганием фтора и трифторхлорметана [патент США N 2895999, oпубл. 21.07.59].

Недостатками способа являются низкая конверсия 67%; необходимость использования избыточного количества исходного трифторхлорметана, который загрязняет целевой продукт; образование в процессе агрессивных продуктов, таких как фториды хлора (это увеличивает опасность процесса); необходимость дополнительной очистки готового продукта от хлора, фторидов хлора, что усложняет технологическую схему.

Наиболее близким по технологической сущности и совокупности существенных признаков является способ получения тетрафторметана реакцией трифторметана с избытком фтора в трубчатом реакторе [патент США N 3414628, oпубл. 03.12.68, нац. кл. 260-653.8].

Недостатком способа является повышенная опасность процесса вследствие:
- подачи в реакционную зону неразбавленного инертом фтора;
- нагревания фтора до высокой температуры 200 - 600oС в зоне ввода фтора в реактор, что способствует преждевременной диссоциации фтора на активные атомы и бурному началу реакции в зоне смешения с трифторметаном, приводящему к неуправляемому развитию процесса;
- проведения реакции фторирования в полом реакторе, что приводит к возникновению местных перегревов и, в итоге, резкому неуправляемому повышению температуры.

Задачей предлагаемого изобретения является разработка способа получения тетрафторметана без указанных выше недостатков.

Поставленная цель достигается методом фторирования галогенсодержащих углеводородов, в частности трифторметана, предварительно нагретых до 100-400oС.

Фтор в зону реакции подается без предварительного нагревания. В качестве инертного разбавителя используется тетрафторметан в количестве 5-90% по отношению к фтору.

Использование в качестве разбавителя фтора тетрафторметана снимает опасность фторирования и не приводит к загрязнению продукта реакции.

Подаваемый на синтез фтор содержит 0,05-0,2% кислорода.

Процесс фторирования галогенсодержащих углеводородов происходит в реакторе, заполненном металлической насадкой (например, медь, никель, хром), что облегчает равномерное распределение тепла в зоне реакции и стабилизации процесса.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. Фторирование трифторметана осуществляют в стальном реакторе, заполненном медной стружкой. Реактор снабжен рубашкой для подачи охлаждающей воды. В нижнюю часть реактора подается предварительно нагретый до температуры 200oС трифторметан в количестве 100 л/час. Фтор, содержащий 0,05 мас.% кислорода и 99,95 мас.% фтора, вводится в нижнюю часть реактора. В нижнюю часть реактора подается тетрафторметан в количестве, равном 5% от подаваемого фтора. Температура в зоне реакции поддерживается на уровне 100oС. Продукты реакции очищают от фтористого водорода конденсацией последнего в ловушке при температуре -10oС. Несконденсировавшийся фтористый водород поглощается поглотителем известковым в колонке.

Состав продукта по данным хроматографического анализа в мас.%: CF4 - 99,8; С2F6 - 0,2 ( с учетом тетрафторметана, поданного на разбавление фтора).

Пример 2. Получение тетрафторметана проводится в условиях примера 1. Содержание кислорода во фторе 0,2%. Количество подаваемого на разбавление тетрафторметана 90% по отношению к фтору. Трифторметан предварительно нагревали до температуры 400oС. Реактор заполнен никелевой стружкой.

Состав продукта после отделения фтористого водорода в мас.%: CF4 - 99,95; С2F6 - 0,05.

Пример 3. Получение тетрафторметана проводится в условиях примера 1. Фторирование осуществляется в полом реакторе. Количество подаваемого на разбавление CF4 - 5,0 % по отношению к фтору. Расход фтора 102 л/ч. Состав продукта после отделения фтористого водорода в мас.%: CF4 - 93,4; С2F6 - 5,0; C3F8 - 1,0 ; C4F10 - 0,6.

Похожие патенты RU2181352C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРМЕТАНА 2001
  • Уклонский И.П.
  • Денисенков В.Ф.
  • Ильин А.Н.
  • Давыдов Н.А.
  • Малков А.В.
  • Волков В.Н.
RU2181351C1
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРЭТАНА И/ИЛИ ОКТАФТОРПРОПАНА 2002
  • Уклонский И.П.
  • Денисенков В.Ф.
  • Ильин А.Н.
  • Давыдов Н.А.
  • Малков А.В.
  • Осташевский Ю.А.
RU2224736C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРУГЛЕРОДОВ 1999
  • Рылеев Г.И.
  • Королев В.Л.
RU2150451C1
СПОСОБ ПОЛУЧЕНИЯ ТРИФТОРИДА АЗОТА 2001
  • Игумнов С.М.
  • Харитонов В.П.
RU2184698C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИРОВАННОГО УГЛЕРОДА 2003
  • Алешинский В.В.
  • Андрейчатенко В.В.
  • Вульф В.А.
  • Выражейкин Е.С.
  • Дедов А.С.
  • Захаров В.Ю.
  • Любимов А.Н.
  • Мурин А.В.
  • Новикова М.Д.
  • Филатов В.Ю.
  • Шабалин Д.А.
RU2241664C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИФТОРЭТАНОВ 1996
  • Пашкевич Д.С.
  • Рылеев Г.И.
  • Алексеев Ю.И.
  • Асович В.С.
  • Королев В.Л.
  • Мухортов Д.А.
RU2115645C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРУГЛЕРОДОВ 1997
  • Барабанов В.Г.
  • Королев В.Л.
RU2130007C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРУГЛЕРОДОВ 2001
  • Кузнецов А.С.
  • Львов В.А.
  • Меньшов В.С.
  • Рабинович Р.Л.
  • Сапожников М.В.
  • Туркин В.С.
RU2183615C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДОВ УГЛЕРОДА 1998
  • Варфоломеев Л.И.
  • Львов В.А.
  • Рабинович Р.Л.
  • Сапожников М.В.
  • Юрочкин В.М.
  • Кузнецов А.С.
RU2149831C1
СПОСОБ ПОЛУЧЕНИЯ ТРИФТОРИДА АЗОТА 2006
  • Акишин Валерий Сергеевич
  • Андриец Сергей Петрович
  • Гаврилов Петр Михайлович
  • Евстафьев Алексей Алексеевич
  • Короткевич Владимир Михайлович
  • Лазарчук Валерий Владимирович
  • Ледовских Александр Константинович
  • Салтан Николай Павлович
  • Скотнов Валерий Сергеевич
RU2317251C1

Реферат патента 2002 года СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРМЕТАНА

Изобретение относится к усовершенствованному способу получения тетрафторметана, применяемого как низкотемпературный хладагент, реагент для сухого травления полупроводников, ингибитор горения. Способ включает фторирование трифторметана фтором, содержащим кислород, в присутствии тетрафторметана при повышенной температуре. При этом используют трифторметан, предварительно подогретый до 100-400oС, и фтор, содержащий 0,05-0,2 мас.% кислорода, и процесс проводят в реакторе, заполненном металлической насадкой, подходящей для условий реакции, такой, как насадка из меди, никеля и хрома, в присутствии в качестве разбавителя тетрафторметана в количестве 5-90 мас.% по отношению к фтору. 1 з.п. ф-лы.

Формула изобретения RU 2 181 352 C1

1. Способ получения тетрафторметана фторированием трифторметана фтором, содержащим кислород, в присутствии тетрафторметана при повышенной температуре, отличающийся тем, что используют трифторметан, предварительно подогретый до 100-400oС, и фтор, содержащий 0,05-0,2 мас. % кислорода, и процесс проводят в реакторе, заполненном металлической насадкой, подходящей для условий реакции, в присутствии тетрафторметана в количестве 5-90 мас. % по отношению к фтору в качестве разбавителя. 2. Способ получения тетрафторметана по п. 1, отличающийся тем, что в качестве металлической насадки используют насадку из меди, никеля и хрома.

Документы, цитированные в отчете о поиске Патент 2002 года RU2181352C1

US 3414628 А, 03.12.1968
ФТОРИСТЫЙ УГЛЕРОД И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1987
  • Земсков С.В.
  • Горностаев Л.Л.
  • Митькин В.Н.
  • Ермаков Ю.И.
  • Лисицын А.С.
  • Лихолобов В.А.
  • Кедринский И.А.
  • Погодаев В.П.
  • Плаксин Г.В.
  • Суровикин В.Ф.
RU2054375C1
US 2902521 А, 01.09.1959
Экономайзер 0
  • Каблиц Р.К.
SU94A1
КОНСТРУКЦИЯ ШИРОКОПОЛОСНОГО РАДИОПРОЗРАЧНОГО ОБТЕКАТЕЛЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2017
  • Биткин Владимир Евгеньевич
  • Денисов Александр Владимирович
  • Агапов Владимир Владимирович
  • Чертов Виталий Геннадьевич
  • Люлина Нина Александровна
  • Бородавин Андрей Викторович
  • Жидкова Ольга Геннадьевна
  • Лёвин Денис Сергеевич
  • Дунаева Александра Александровна
RU2722559C2
Грузозахватное устройство 1976
  • Паутин Владимир Сергеевич
SU823262A1
Пробочный кран 1925
  • Ладыженский И.А.
SU1960A1
US 3752850 A, 14.08.1973
МАСЛЯНЫЙ ЖЕЛОБ И ТРАНСМИССИЯ (ВАРИАНТЫ), СОДЕРЖАЩАЯ МАСЛЯНЫЙ ЖЕЛОБ 2015
  • Хосоно Кийохито
  • Сакураи Хирохито
  • Сато Кадзухико
  • Аояма Хидеки
RU2684987C2
СПОСОБ И НАБОР ДЛЯ ИММУНОФЕРМЕНТНОГО ОПРЕДЕЛЕНИЯ АКТИВНОСТИ И ИНГИБИРОВАНИЯ IGA1-ПРОТЕАЗЫ 2006
  • Козлов Леонид Васильевич
  • Романов Сергей Владимирович
  • Дьяков Всеволод Львович
  • Суровцев Владимир Иванович
  • Теймуразов Матар Георгиевич
RU2310853C1

RU 2 181 352 C1

Авторы

Уклонский И.П.

Денисенков В.Ф.

Ильин А.Н.

Малков А.В.

Волков В.Н.

Иванова Л.М.

Даты

2002-04-20Публикация

2001-04-24Подача