МАГНЕЗИАЛЬНО-СИЛИКАТНЫЙ ОГНЕУПОР Российский патент 2002 года по МПК C04B35/20 C04B35/66 

Описание патента на изобретение RU2182140C1

Изобретение относится к огнеупорной промышленности и может быть использовано для производства магнезиально-силикатных огнеупоров, применяемых в футеровках нагревательных, обжиговых печей и других тепловых агрегатах.

Известен магнезиально-силикатный огнеупор, включающий, мас.%: форстерит 49-57, магнезиально-хромалюможелезистый шпинелид состава Mg (Cr, Al, Fe)2О4 21-26, периклаз 20-25 (Пат. РФ 2165396, М.Кл.7 С 04 В 35/20, 35/04, 35/66, опубл. 20.04.2001 г.).

Известный огнеупор обладает относительно высокой клинкероустойчивостью и предназначен для осуществления промежуточных ремонтов футеровки зоны спекания вращающихся печей цементной промышленности. Однако указанный огнеупор имеет высокую истираемость в интервале температур 300-1200oС, что не позволяет использовать его в футеровках зоны загрузки шахтных и вращающихся обжиговых печей, где основной причиной износа является истирание футеровки со стороны обжигаемого кускового материала (магнезита, доломита и др.).

В нагревательных металлургических печах истирание огнеупора происходит в присутствии окалины. В процессе службы свободный периклаз, содержащийся в межзеренной составляющей известного огнеупора, реагирует с окалиной с образованием магнезиоферрита, что сопровождается объемными изменениями, разрыхлением структуры огнеупора, снижением его прочности и, как следствие, приводит к более интенсивному истиранию. В связи с этим известный магнезиально-силикатный огнеупор не рекомендуется использовать в таких элементах футеровки, как подины нагревательных металлургических печей, нижнее строение мартеновских печей, где эксплуатация осуществляется в присутствии железосодержащих реагентов.

Наиболее близким к изобретению является магнезиально-силикатный огнеупор, включающий, мас.%: форстерит 51-73, алюмомагниевая шпинель 21-30, периклаз 5-15, монтичеллит 1-4 (Авт. св. СССР 1266122, М.Кл. С 04 В 35/20, опубл. 30.11.1987г.).

Известный огнеупор обладает достаточно высокой устойчивостью к щелочно-силикатным расплавам и имеет низкую газопроницаемость. Для его получения может быть использовано техногенное сырье - шлаки ферросплавного производства, что не только экономически целесообразно, но и решает проблемы экологии.

Однако, несмотря на содержание в структуре алюмомагниевой шпинели, известный огнеупор недостаточно устойчив к истиранию при температурах службы 300-1200oС, особенно в присутствии окалины или другого железосодержащего реагента. Причиной повышения истираемости известного огнеупора при воздействии окалины является наличие повышенного количества свободного периклаза (до 15 мас.%), взаимодействующего с оксидами железа.

Указанные недостатки ограничивают область применения известного магнезиально-силикатного огнеупора, не позволяя эффективно использовать его в подинах нагревательных металлургических печей, зонах загрузки обжиговых печей и др.

Задачей изобретения является повышение качества магнезиально-силикатного огнеупора на основе техногенного сырья для расширения области его применения.

Технический результат, который может быть достигнут при использовании изобретения, заключается в снижении истираемости при высоких температурах, в том числе в присутствии окалины.

Указанный технический результат достигается тем, что магнезиально-силикатный огнеупор, включающий форстерит, алюмомагниевую шпинель, периклаз и монтичеллит, согласно изобретению дополнительно содержит магнезиально-хромалюможелезистый шпинелид состава Mg (Cr, Al, Fe)2O4 при следующем соотношении минеральных фаз, мас.%:
Форстерит - 43-62
Алюмомагниевая шпинель - 14-22
Указанный шпинелид - 12-20
Периклаз - 4-11
Монтичеллит - 1-4
Предлагаемая совокупность минеральных фаз в заявляемом соотношении обеспечивает повышение качества магнезиально-силикатного огнеупора. Снижение истираемости при высоких температурах (300-1200oС), в том числе в присутствии окалины, достигнуто благодаря формированию плотной структуры, в которой содержится значительное количество наиболее абразиво- и химически устойчивой шпинельной фазы, как в виде дополнительного магнезиально-хромалюможелезистого шпинелида, так и в виде алюмомагнезиальной шпинели. Вместе с тем, свободный периклаз распределен в решетке шпинельной фазы и тем самым защищен от активного взаимодействия с оксидами железа. При этом содержание периклаза снижено до 11%.

Изменение предлагаемого соотношения минеральных фаз ухудшает свойства магнезиально-силикатного огнеупора. Снижение содержания магнезиально-хромалюможелезистого шпинелида менее 12 мас.% приводит к повышению истираемости огнеупора при высокой температуре, особенно в присутствии окалины. При увеличении доли шпинелида более 20 мас.% свойства огнеупора ухудшаются из-за рыхлой структуры вследствие недостаточного спекания огнеупора и соответственного снижения прочности и истираемости.

Для изготовления магнезиально-силикатных огнеупоров использовали:
- плавленый форстеритошпинельный материал (шлак от производства высокоуглеродистого феррохрома). Химический состав шлака, мас.%: SiO2 32,5; MgO 45,0; Аl2О3 17,1; Сr2O3 3,8; CaO 1,1; Fe2O3 0,4;
- спеченный периклазовый порошок с содержанием, мас.%: MgO 92,2; CaO 2,6; SiO2 3,3; Fe2О3 1,9;
- хромит с содержанием, мас.%: Сr2О3 38,4; Fе2О3 18,7; SiO2 6,1; Аl2O3 14,1; MgO 14,1;
- лом периклазошпинелидных огнеупоров с содержанием, мас.%: MgO 61,2; Сr2O3 16,4; SiO2 5,9; Fе2O3 7,6; Аl2О3 5,8; CaO 2,9.

Плавленый форстеритошпинельный материал фракции 2-0 мм смешивали с тонкомолотой составляющей фракции менее 0,063 мм в виде смеси хромита и спеченного периклазового порошка в соотношениях, мас.%: 40:60; 50:50 и 60:40 или тонкомолотым ломом периклазошпинелидных изделий. Соотношения компонентов в шихте представлены в табл. 1. Шихту увлажняли раствором лигносульфаната технического плотностью 1,22 г/см3 в количестве 5-6 мас.% (сверх 100%). Из полученной шихты прессовали изделия под давлением 80 Н/мм2, которые затем сушили и обжигали при температуре 1380oС.

Фазовый состав полученных магнезиально-силикатных огнеупоров, определенный путем петрографического анализа, представлен в табл. 2, где также приведены свойства огнеупоров.

Открытую пористость, прочность при сжатии и температуру начала деформации под нагрузкой определяли стандартными методами.

Истираемость магнезиально-силикатных огнеупоров при высокой температуре определяли по методике, описанной в ст. В.Н. Боричева и др. "Установка для определения истираемости и коэффициента трения огнеупоров при высоких температурах" (ж. "Огнеупоры", 1987, 1, с.44-46).

Испытания цилиндрических образцов составов 1-5 диаметром 25 и высотой 50 мм проводили при температуре 1200oС. Истираемость образцов оценивали относительным коэффициентом истираемости Кист. при температуре 1200oС. При этом за Кист.= 1,0 был принят показатель наиболее устойчивого к истиранию огнеупора состава 2.

Для определения влияния окалины на истираемость магнезиально-силикатных огнеупоров при высокой температуре на образцы огнеупоров составов 2 и 5 диаметром 25 и высотой 50 мм помещали цилиндры высотой 12 мм того же диаметра, спрессованные из тонкомолотой окалины. Подготовленные таким способом образцы подвергали термообработке при температуре 1100oС с выдержкой при конечной температуре в течение 180 ч.

В результате петрографического анализа образцов после термообработки установлено значительно более интенсивное (глубиной до 25 мм) насыщение известного огнеупора оксидом железа по сравнению с предлагаемым. При этом наблюдается повышение пористости и снижение прочности измененной зоны (табл. 3). Степень истираемости при температуре 1200oС для образцов огнеупоров после взаимодействия с окалиной определяли по вышеприведенной методике. Значения Кокист. указаны в табл. 2 и 3.

Согласно данным табл. 2 предлагаемый огнеупор (составы 1-4) при более высоких показателях прочности и температуры начала деформации под нагрузкой характеризуется значительно (на 45-73%) меньшей истираемостью при высокой температуре по сравнению с известным огнеупором состава 5, а в присутствии окалины - более чем в 2 раза.

Таким образом, магнезиально-силикатный огнеупор по изобретению может успешно применяться в подинах нагревательных металлургических печей, нижнем строении мартеновских печей, футеровках зон загрузки обжиговых вращающихся и шахтных печей.

Наряду с расширением области применения огнеупоров на основе техногенного сырья, использование изобретения позволит также улучшить экологию окружающей среды.

Похожие патенты RU2182140C1

название год авторы номер документа
МАГНЕЗИАЛЬНО-ШПИНЕЛИДНЫЙ ОГНЕУПОР 2002
  • Савченко Ю.И.
  • Шевцов А.Л.
  • Солодова Л.И.
  • Протасов В.В.
  • Вислогузова Э.А.
  • Шубин В.И.
RU2198859C1
ПЕРИКЛАЗОШПИНЕЛИДНЫЙ ОГНЕУПОР 1999
  • Савченко Ю.И.
  • Шубин В.И.
RU2142926C1
МАГНЕЗИАЛЬНОСИЛИКАТНЫЙ ОГНЕУПОР 2000
  • Савченко Ю.И.
  • Шубин В.И.
RU2165396C1
ПЕРИКЛАЗОШПИНЕЛИДНЫЙ ОГНЕУПОР 2015
  • Аксельрод Лев Моисеевич
  • Устинов Виталий Александрович
  • Пицик Ольга Николаевна
  • Марясев Игорь Геннадьевич
  • Найман Дмитрий Александрович
RU2623760C2
Магнезиально-силикатный огнеупор 1985
  • Савченко Ю.И.
  • Перепелицын В.А.
  • Степанова И.А.
  • Павлов П.П.
  • Табатчикова С.Н.
  • Бежаев В.М.
SU1266122A1
Магнезиально-силикатный огнеупор 1990
  • Савченко Юрий Иванович
  • Перепелицын Владимир Алексеевич
  • Табатчикова София Николаевна
  • Орлов Вячеслав Петрович
  • Чеповский Анатолий Викторович
  • Непотачев Александр Максимович
SU1719360A1
ПЕРИКЛАЗОШПИНЕЛЬНЫЙ ОГНЕУПОР 1998
  • Савченко Ю.И.
  • Шубин В.И.
RU2124487C1
ФУТЕРОВКА ШАХТНОЙ ПЕЧИ 1997
  • Савченко Ю.И.
RU2112185C1
Огнеупор 1984
  • Савченко Юрий Иванович
  • Перепелицин Владимир Алексеевич
  • Усманов Мурат Адельшаевич
  • Выдрина Жанна Алексеевна
  • Шевцов Анатолий Леонидович
SU1175922A1
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ПЕРИКЛАЗОШПИНЕЛИДНЫХ ОГНЕУПОРОВ 2014
  • Аксельрод Лев Моисеевич
  • Шаров Максим Борисович
  • Пицик Ольга Николаевна
  • Найман Дмитрий Александрович
RU2570176C1

Иллюстрации к изобретению RU 2 182 140 C1

Реферат патента 2002 года МАГНЕЗИАЛЬНО-СИЛИКАТНЫЙ ОГНЕУПОР

Изобретение относится к огнеупорной промышленности и может быть использовано для производства магнезиально-силикатных огнеупоров, применяемых в футеровках нагревательных, обжиговых печей и других тепловых агрегатов. Магнезиально-силикатный огнеупор содержит минеральные фазы в следующем соотношении, мас.%: форстерит 43-62, алюмомагниевая шпинель 14-22, магнезиально-хромалюможелезистый шпинелид состава Mg (Cr, Al, Fe)2O4 12-20, периклаз 4-11, монтичеллит 1-4. Предложенный огнеупор характеризуется низкой истираемостью при температурах 300-1200oС, в том числе в присутствии окалины. Для его изготовления используется техногенное сырье - шлак от производства высокоуглеродистого феррохрома. 3 табл.

Формула изобретения RU 2 182 140 C1

Магнезиально-силикатный огнеупор, включающий форстерит, алюмомагниевую шпинель, периклаз и монтичеллит, отличающийся тем, что он дополнительно содержит магнезиально-хромалюможелезистый шпинелид состава Mg (Cr, Al, Fe)2O4 при следующем соотношении минеральных фаз, маc. %:
Форстерит - 43-62
Алюмомагниевая шпинель - 14-22
Указанный шпинелид - 12-20
Периклаз - 4-11
Монтичеллит - 1-4

Документы, цитированные в отчете о поиске Патент 2002 года RU2182140C1

Магнезиально-силикатный огнеупор 1985
  • Савченко Ю.И.
  • Перепелицын В.А.
  • Степанова И.А.
  • Павлов П.П.
  • Табатчикова С.Н.
  • Бежаев В.М.
SU1266122A1
ДВИЖИТЕЛЬ ДЛЯ ПЕРЕМЕЩЕНИЯ ВНУТРИ ФЕРРОМАГНИТНОГО ТРУБОПРОВОДА 2000
  • Белый Д.М.
RU2165369C1
Огнеупор 1984
  • Савченко Юрий Иванович
  • Перепелицин Владимир Алексеевич
  • Усманов Мурат Адельшаевич
  • Выдрина Жанна Алексеевна
  • Шевцов Анатолий Леонидович
SU1175922A1
Магнезиально-силикатный огнеупор 1989
  • Перепелицын Владимир Алексеевич
  • Белозеров Матвей Маркелович
  • Сизов Владимир Иванович
  • Фарафонов Геннадий Алексеевич
  • Куперман Юрий Ефимович
  • Шевченко Алексей Данилович
  • Корченов Юрий Иванович
  • Харламов Анатолий Яковлевич
SU1682350A1
US 4792537 А, 20.12.1988
US 4348485 А, 07.09.1982
ДЕГТЯРЕВА Э.В
и др
Магнезиально-силикатные и шпинельные огнеупоры.-М.: Металлургия, 1977, с.135, 144.

RU 2 182 140 C1

Авторы

Савченко Ю.И.

Савченко И.Ю.

Даты

2002-05-10Публикация

2001-07-05Подача