Изобретение относится к химической технологии неорганических веществ с получением соединений редких металлов, используемых в металлургии, в создании новых конструкционных материалов со специфическими свойствами, а также диоксида титана, применяемого в производстве лакокрасочных материалов, пластмасс, бумаги.
Известен способ переработки лопаритового концентрата (см. Патент России 2147621, МПК7 С 22 В 34/24, 59/00, 34/12; C 01 G 23/04, C 22 B 3/06, 2000), включающий разложение его концентрированной азотной кислотой с получением гидратного кека окислов тугоплавких металлов, растворение кека в плавиковой кислоте с получением раствора титана, ниобия и тантала, экстракционное отделение ниобия и тантала от титана трибутилфосфатом с переводом ниобия и тантала в органическую фазу, а титана - в водную, упаривание водной фазы в 1.5-2.0 раза, отгонку плавиковой кислоты в присутствии концентрированной серной кислоты с последующей переработкой кубового остатка на диоксид титана и серную кислоту, которую возвращают на операцию отгонки плавиковой кислоты.
К недостаткам данного способа относятся его громоздкость, сложность утилизации растворов, образовавшихся в результате экстракции, недостаточная степень утилизации HF (менее 93%), загрязнение фосфором оксидов ниобия и тантала по причине гидролиза трибутилфосфата и токсичность трибутилфосфата, низкие пигментные свойства получаемого диоксида титана, который представляет собой технический продукт с заметным желто-серым оттенком, состоящий из смеси анатаза и рутила.
Наиболее близким к заявляемому техническому решению является способ переработки лопаритового концентрата (см. Патент России 2149912, МПК7 С 22 В 34/24, 34/12, 3/06, 3/26, 2000), включающий разложение измельченного лопаритового концентрата концентрированной азотной кислотой с переводом редкоземельных элементов в раствор, а титана, ниобия и тантала в гидратный осадок, отделение гидратного осадка, обработку его фтористоводородной кислотой при массовом соотношении кислоты (в расчете на 100%-ную HF) и сухого гидратного осадка более 1.1:1.0 с получением раствора титана, ниобия и тантала, экстракционное отделение ниобия и тантала от титана октиловым спиртом с переводом ниобия и тантала в органическую фазу, а титана - в водную и обработку последней при температуре 600-650oС с получением диоксида титана в виде смеси анатазной и рутильной модификации и плавиковой кислоты.
Недостатками известного способа являются повышенный расход фтористоводородной кислоты на операции растворения гидратного осадка в силу расчета расхода HF на образование фтортитановой кислоты Н2TiF6, низкие пигментные свойства получаемого диоксида титана, который представляет собой технический продукт с заметным желто-серым оттенком, состоящий из смеси анатаза и рутила.
Настоящее изобретение направлено на решение задачи уменьшения расхода реагента, содержащего фтористый водород, и повышения пигментных свойств диоксида титана.
Поставленная задача решается тем, что в способе переработки лопаритового концентрата, включающем разложение его азотной кислотой с переводом редкоземельных элементов в раствор, а титана, ниобия и тантала в гидратный осадок, отделение гидратного осадка, обработку его реагентом, содержащим фтористый водород, с получением раствора титана, ниобия и тантала, экстракционное отделение ниобия и тантала от титана алифатическим спиртом с переводом ниобия и тантала в органическую фазу, а титана - в водную и ее термическую обработку с получением диоксида титана и фтористоводородного продукта, согласно изобретению обработку гидратного осадка реагентом, содержащим фтористый водород, ведут при массовом соотношении реагента (в расчете на 100%-ную HF) и сухого гидратного осадка 0.9-1.0:1, перед термической обработкой в водную фазу вводят металлический цинк в количестве не более 5 мас.% по отношению к титану в пересчете на ТiO2, а термическую обработку ведут при 500-750oС, после чего диоксид титана обрабатывают модификатором с получением пигментного рутила.
Поставленная задача решается также тем, что в качестве реагента, содержащего фтористый водород, используют фтористоводородную кислоту или смесь фтористого водорода и паров воды.
Поставленная задача решается и тем, что в качестве алифатического спирта используют спирты фракции С7-С9, преимущественно октанол-1, октанол-2, изооктанол или их смесь.
Решение поставленной задачи достигается также тем, что в качестве модификатора используют смесь фосфата алюминия и кремнекислоты при их массовом расходе 1-10% Аl2О3 и 1-5% SiO2 по отношению к диоксиду титана.
Уменьшение расхода фторсодержащего реагента на обработку гидратного осадка приводит к уменьшению объемов фторсодержащих растворов, к концентрированию их по основным компонентам, а параметры термической обработки обеспечивают почти 100%-ную регенерацию HF. Повышение качества диоксида титана достигается путем введения металлического цинка, способствующего восстановлению железа (III) до железа (II), который не загрязняет диоксид титана и инициирует формирование при термообработке рутила, а пигментные свойства приобретаются благодаря операции поверхностной обработки смесью фосфата алюминия и кремнекислоты.
Проведение процесса обработки гидратного осадка при массовом соотношении реагента, содержащего фтористый водород (в расчете на 100%-ную HF)? и сухого гидратного осадка менее 0.9:1 сопровождается снижением степени перехода редких металлов и титана во фторидный раствор и значительным увеличением продолжительности процесса. Увеличение массового соотношения реагента, содержащего фтористый водород (в расчете на 100%-ную HF), и сухого гидратного осадка более 1:1 практически не оказывает влияния на скорость растворения и степень перехода редких металлов и титана в раствор. Кроме того, при увеличении указанного соотношения более 1:1 снижается эффективность разделения тантала и ниобия на стадии экстракции алифатическими спиртами.
Использование алифатических спиртов обусловлено их способностью извлекать ниобий и тантал из фторидных растворов в отсутствие других минеральных кислот, более высокой устойчивостью в экстракционном процессе по сравнению с трибутилфосфатом, циклогексаноном и метилизобутилкетоном, более высокой селективностью при получении чистых соединений ниобия и тантала, более низкой растворимостью в водных растворах и более низкой пожарной опасностью по сравнению с циклогексаноном и метилизобутилкетоном. Использование алифатических спиртов, которые не содержат водорастворимых соединений, в частности фосфора, также способствует повышению чистоты получаемых продуктов.
В качестве алифатических спиртов используют спирты С7-С9, содержащие смесь изомеров октанола, гептанола и нонанола, преимущественно смесь изомеров октанола. Использование спиртов с числом атомов углерода менее 7 ведет к резкому увеличению растворимости экстрагента и ухудшению технологических и экономических показателей процесса. Использование спиртов с числом атомов углерода более 9 значительно ухудшает расслаивание органической и водной фаз, что также отрицательно влияет на технологические и экономические показатели.
Введение металлического цинка в водную фазу перед ее термической обработкой способствует переводу анатазной модификации диоксида титана в рутильную, а также позволяет понизить нижнюю границу термической обработки до 500oС.
Количество вводимого металлического цинка составляет не более 5 маc.% по отношению к титану в пересчете на ТiO2, так как большее количество не оказывает влияния на качество диоксида титана.
Проведение процесса сжигания при температуре ниже 500oС приводит к увеличению содержания фтора в пигменте, что ухудшает его качество за счет повышенного содержания водорастворимых солей (ВРС), имеющих кислую реакцию, а также возрастает доля анатазной формы пигмента. При температуре выше 750oС снижается эффективность действия модификатора и значительно повышаются затраты тепла, необходимого для проведения операции сжигания.
Обработка продукта сжигания смесью фосфата алюминия и кремнекислоты, массовый расход которых менее 1% Аl2О3 и менее 1% SiO2 приводит к снижению агрегативной устойчивости лакокрасочных материалов (ЛКМ), а также уменьшается срок службы покрытий. При расходе более 10% Аl2О3 и более 5% SiO2 резко повышается показатель укрывистости пигмента и ухудшаются реологические свойства краски на его основе.
Способ осуществляют следующим образом. Лопаритовый концентрат обрабатывают 69-71%-ной азотной кислотой при 100-110oС в течение 38-42 ч. В образовавшуюся суспензию добавляют воду и фильтруют под вакуумом с отделением гидратного осадка, который промывают водой и обрабатывают фторсодержащим реагентом при массовом соотношении реагента (в расчете на 100%-ную HF) и сухого гидратного осадка 0.9-1.0:1. В качестве реагента, содержащего фтористый водород, используют фтористоводородную кислоту или смесь фтористого водорода и паров воды. При этом получается фторидный раствор редких металлов и титана следующего состава, г/л: ТiO2 300, Nb2O5 60, Та2О5 4. В него добавляют алифатические спирты и переводят экстракцией ниобий и тантал в органическую фазу. Отношение объемов алифатические спирты: раствор равно 1.1-1.3:1. Извлечение в органическую фазу за одну ступень составляет, %: Та2O5 95.0-95.2, Nb2O5 98.0-98.4, TiO2 4.7-4.8. За три ступени противоточной экстракции в тех же условиях в органическую фазу переходит около 5% ТiO2 и более 99.5% Та2O5 и Nb2О5, при содержании в них фосфора, в пересчете на P2O5, менее 0.01%. В водную фазу, которая представляет собой фторидный раствор титана, вводят металлический цинк в количестве не более 5 мас.% по отношению к титану в пересчете на TiO2, а затем в специальной "сжигательной" установке подвергают его термообработке при 500-750oС с получением диоксида титана и фторсодержащего продукта (фтористоводородной кислоты или смеси фтористого водорода и паров воды). Степень регенерации HF составляет не менее 98%. Диоксид титана распульповывают в воде при Т:Ж=1:5 и при перемешивании обрабатывают смесью фосфата алюминия и кремнекислоты, массовый расход которых соответствует 1-10% Аl2O3 и 1-5% SiO2 no отношению к диоксиду титана. После обработки продукт сушат при 250-300oС с получением пигментного диоксида титана рутильной модификации. Свойства пигментного диоксида титана: дисперсность (содержание частиц размером менее 1 мкм) - 100%, белизна - 94.6-96.8 усл.ед., укрывистость - 30-35 г/м2, маслоемкость - 25-30 г/100 г пигмента.
Фтористоводородный продукт (фтористоводородную кислоту или смесь фтористого водорода и паров воды) используют в обороте на операции обработки гидратного осадка.
Сущность заявляемого способа может быть пояснена следующими Примерами.
Пример 1. Берут 1 кг лопаритового концентрата состава, мас.%: TiO2 38.1, Nb2O5 8.14, Та2O5 0.57, РЗЭ 32.0, Na2O 8.48, CaO 4.74, Fe2O3 2.2, SrO 2.5, SiO2 1.4, ThO2 0.54 и обрабатывают его 70%-ной азотной кислотой при Т:Ж=1:1, 100-110oС в течение 40 ч. Затем суспензию разбавляют водой, объем которой равен первоначальному объему азотной кислоты, охлаждают до 30-40oС, отделяют гидратный осадок, промывают его водой при Т:Ж=1:3 и обрабатывают фтористоводородной кислотой, при массовом соотношении кислоты (в расчете на 100%-ную HF) и сухого гидратного осадка 0.9:1. В полученный при этом редкометальный титановый раствор добавляют октанол-1 из расчета отношения объемов октанол-1 : раствор, равного 1.3:1, и переводят экстракцией ниобий и тантал в органическую фазу, а титан в водную. Степень извлечения в органическую фазу за три ступени противоточной экстракции составляет более 99.5% Та2O5 и Nb2O5, при содержании в них фосфора, в пересчете на Р2O5, менее 0.01%. В водную фазу добавляют металлический цинк в количестве 0.1 мас.% по отношению к титану в пересчете на ТiO2, а затем ведут термическую обработку при 500oС с получением диоксида титана и фтористоводородной кислоты. Диоксид титана обрабатывают смесью фосфата алюминия и кремнекислоты, массовый расход которых составляет 1% Аl2О3 и 5% SiO2 по отношению к диоксиду титана, и после сушки получают пигментный диоксид титана рутильной модификации со следующими свойствами: дисперсность (содержание частиц размером менее 1 мкм) - 100%, белизна - 94.6 усл.ед., укрывистость - 30 г/м2, маслоемкость - 25 г/100 г пигмента. Полученную фтористоводородную кислоту используют в обороте при обработке гидратного осадка.
Пример 2. Процесс ведут в соответствии с условиями Примера 1. Отличие заключается в том, что гидратный осадок обрабатывают смесью фтористого водорода и паров воды при массовом соотношении смеси (в расчете на 100%-ную HF) и сухого гидратного осадка 0.95:1. В полученный при этом редкометальнотитановый раствор добавляют октанол-2 из расчета отношения объемов октанол-2 : раствор, равного 1.1: 1, и переводят экстракцией ниобий и тантал в органическую фазу, а титан в водную. Степень извлечения в органическую фазу за три ступени противоточной экстракции составляет более 99.5% Та2O5 и Nb2O5, при содержании в них фосфора, в пересчете на Р2О5, менее 0.01%. В водную фазу добавляют металлический цинк в количестве 2.5 мас.% по отношению к титану в пересчете на TiO2, а затем ведут термическую обработку при 650oС с получением диоксида титана и смеси фтористого водорода и паров воды. Диоксид титана обрабатывают смесью фосфата алюминия и кремнекислоты, массовый расход которых составляет 5% Аl2O3 и 2.5% SiO2 по отношению к диоксиду титана, и после сушки получают пигментный диоксид титана рутильной модификации со следующими свойствами: дисперсность (содержание частиц размером менее 1 мкм) -100%, белизна - 96.8 усл.ед., укрывистость - 35 г/м2, маслоемкость - 28 г/100 г пигмента. Полученную смесь фтористого водорода и паров воды используют в обороте при обработке гидратного осадка.
Пример 3. Процесс ведут в соответствии с условиями Примера 1. Отличие заключается в том, что гидратный осадок обрабатывают фтористоводородной кислотой при массовом соотношении кислоты (в расчете на 100%-ную HF) и сухого гидратного осадка 1:1. В полученный при этом редкометальнотитановый раствор добавляют изооктанол из расчета отношения объемов изооктанол : раствор, равного 1.25:1, и переводят экстракцией ниобий и тантал в органическую фазу, а титан в водную. Степень извлечения в органическую фазу за три ступени противоточной экстракции составляет более 99.5% Та2O5 и Nb2O5, при содержании в них фосфора, в пересчете на Р2O5, менее 0.01%. В водную фазу добавляют металлический цинк в количестве 5 мас.% по отношению к титану в пересчете на ТiO2, а затем подвергают термической обработке при 750oС с получением диоксида титана и фтористоводородной кислоты. Диоксид титана обрабатывают смесью фосфата алюминия и кремнекислоты, массовый расход которых составляет 10%Аl2O3 и 1% SiO2 по отношению к диоксиду титана, и после сушки получают пигментный диоксид титана рутильной модификации со следующими свойствами: дисперсность (содержание частиц размером менее 1 мкм) - 100%, белизна - 96.8 усл.ед., укрывистость - 31 г/м2, маслоемкость - 30 г/100 г пигмента.
Полученную фтористоводородную кислоту используют в обороте при обработке гидратного осадка.
Пример 4. Процесс ведут в соответствии с условиями Примера 3. Отличие заключается в том, что в полученный редкометальнотитановый раствор добавляют октанол-1 и октанол-2 (в объемном соотношении 1:1) из расчета отношения объемов смесь октанола-1 и октанола-2 : раствор, равного 1.22:1. Степень извлечения в органическую фазу за три ступени противоточной экстракции составляет более 99.5% Та2O5 и Nb2O5, при содержании в них фосфора, в пересчете на P2O5, менее 0.01%. Далее процесс аналогичен Примеру 3.
Пример 5. Процесс ведут в соответствии с условиями Примера 3. Отличие заключается в том, что в полученный редкометальнотитановый раствор добавляют алифатические спирты фракции С7-С9 из расчета отношения объемов алифатические спирты фракции С7-С9 : раствор 1.18:1. Степень извлечения в органическую фазу за три ступени противоточной экстракции составляет более 99.5% Та2О5 и Nb2O5, при содержании в них фосфора, в пересчете на Р2O5, менее 0.01%. Далее процесс аналогичен Примеру 3.
Обобщенные сравнительные данные сущности и характеристик способов переработки лопаритового концентрата согласно изобретению и принятых в качестве аналога и прототипа приведены в Таблице.
Данные Примеров и Таблицы подтверждают преимущества заявляемого способа, заключающиеся в уменьшении расхода фтористоводородного реагента более чем в 1.2 раза и улучшении качества диоксида титана, который получают в виде пигментного диоксида титана рутильной модификации.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ НИОБИЯ И ТАНТАЛА ИЗ ТИТАНСОДЕРЖАЩЕГО РЕДКОМЕТАЛЬНОГО КОНЦЕНТРАТА | 2010 |
|
RU2434958C1 |
СПОСОБ ПЕРЕРАБОТКИ ЛОПАРИТОВОГО КОНЦЕНТРАТА | 2004 |
|
RU2270265C1 |
СПОСОБ ПЕРЕРАБОТКИ ПЕРОВСКИТОВОГО КОНЦЕНТРАТА С ИЗВЛЕЧЕНИЕМ НИОБИЯ И ТАНТАЛА | 2008 |
|
RU2387722C1 |
СПОСОБ ПЕРЕРАБОТКИ РАСТВОРА, СОДЕРЖАЩЕГО ФТОРТИТАНОВУЮ КИСЛОТУ И ПРИМЕСНЫЕ ЭЛЕМЕНТЫ | 2003 |
|
RU2241677C1 |
СПОСОБ РЕЭКСТРАКЦИИ МЕТАЛЛОВ ИЗ ОРГАНИЧЕСКОЙ ФАЗЫ | 1991 |
|
RU2033441C1 |
СПОСОБ ПОЛУЧЕНИЯ ФТОРТАНТАЛАТА КАЛИЯ | 1992 |
|
RU2031967C1 |
СПОСОБ ПЕРЕРАБОТКИ ПЛЮМБОМИКРОЛИТОВОГО КОНЦЕНТРАТА | 2008 |
|
RU2360985C1 |
СПОСОБ РАЗЛОЖЕНИЯ ТИТАНОКАЛЬЦИЕВОГО СЫРЬЯ | 2001 |
|
RU2196736C1 |
СПОСОБ ПЕРЕРАБОТКИ СФЕНОВОГО КОНЦЕНТРАТА | 2000 |
|
RU2178769C1 |
СПОСОБ ОЧИСТКИ БАДДЕЛЕИТОВОГО КОНЦЕНТРАТА | 2006 |
|
RU2356839C2 |
Изобретение относится к химической технологии получения соединений редких металлов. Проводят разложение лопаритового концентрата 69-71%-ной азотной кислотой при 100-110oС в течение 38-42 ч. Отделяют гидратный осадок титана, ниобия и тантала. Обрабатывают его реагентом, содержащим фтористый водород, с получением раствора титана, ниобия и тантала. Обработку ведут при массовом соотношении реагента (в расчете на 100%-ную HF) и сухого гидратного осадка 0,9-1,0:1. В качестве реагента, содержащего фтористый водород, используют фтористоводородную кислоту или смесь фтористого водорода и паров воды. Затем осуществляют экстракционное отделение ниобия и тантала от титана алифатическими спиртами с переводом ниобия и тантала в органическую фазу, а титана - в водную. В качестве алифатических спиртов используют спирты фракции С7-С9, преимущественно октанол-1, октанол-2 или их смесь. В водную фазу вводят металлический цинк в количестве не более 5 мас.% по отношению к титану в пересчете на TiO2 и ведут ее термическую обработку при 500-750oС с получением диоксида титана. Диоксид титана обрабатывают модификатором с получением пигментного рутила. В качестве модификатора используют смесь фосфата алюминия и кремнекислоты при их массовом расходе 1-10% Al2O3 и 1-5% SiO2 по отношению к диоксиду титана. Результат заключается в уменьшении расхода фторсодержащего реагента более чем в 1,2 раза и в улучшении качества диоксида титана, представляющего собой пигментный диоксид титана рутильной модификации. 3 з.п. ф-лы, 1 табл.
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛОВ ТУГОПЛАВКИХ МЕТАЛЛОВ ИЗ ЛОПАРИТОВОГО КОНЦЕНТРАТА | 1999 |
|
RU2149912C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛОВ ТУГОПЛАВКИХ МЕТАЛЛОВ ИЗ ЛОПАРИТОВОГО КОНЦЕНТРАТА | 1999 |
|
RU2147621C1 |
МИХАЙЛИЧЕНКО А.И | |||
и др | |||
Редкоземельные металлы | |||
- М.: Металлургия, 1987, с.21-24 | |||
ЗЕЛИКМАН А.Н | |||
и др | |||
Ниобий и тантал | |||
- М.: Металлургия, 1990, с.64-67. |
Авторы
Даты
2002-05-27—Публикация
2000-08-10—Подача