СПОСОБ КОНВЕРСИИ АММИАКА Российский патент 2002 года по МПК C01B21/26 

Описание патента на изобретение RU2184699C1

Изобретение относится к области производства азотной кислоты, а именно к процессу конверсии аммиака с использованием двухступенчатой каталитической системы в агрегатах УКЛ-0,716.

Известен способ каталитического окисления аммиака, в котором на первой ступени используют слой платиноидных сеток, а на второй - один слой сотового катализатора регулярной структуры и в струях газовой смеси, двигающихся по сотовым каналам катализатора, поддерживают отношение средней рабочей скорости к скорости звука в этих условиях в интервале 4,8•10-4-0,024 [Патент RU 2119889, 1998].

Способ не дает существенного повышения степени конверсии аммиака и снижения потерь платиноидов.

Наиболее близким к предлагаемому техническому решению является способ конверсии аммиака, включающий пропускание реакционной газовой смеси, содержащей аммиак и кислородсодержащий газ, через двухступенчатую каталитическую систему, в которой первой ступенью по ходу газовой смеси является слой платиноидных сеток, а второй ступенью - слой катализатора регулярной сотовой структуры, причем на второй ступени каталитической системы используют 2-5 пространственно разделенных слоев катализатора регулярной сотовой структуры и между слоями катализатора сотовой структуры располагают газопроницаемый инертный материал [Патент RU 2145935, 2000].

Известный способ конверсии аммиака имеет следующие недостатки:
- он не устраняет возможные вибрации и прогибы платиноидных сеток при обратном ходе газа во время остановок аппарата, что является одной из причин снижения механических потерь платиноидов и срока службы катализатора,
- оформление второй ступени в виде ряда слоев катализатора и увеличение, таким образом, числа участков неустановившегося течения газа может привести к отклонению времени пребывания на платиноидном и в блочном катализаторе от оптимального значения, что в свою очередь снижает селективность процесса.

- расположение в промежутке между слоями сотовой структуры газопроницаемого инертного материала (нихромовой сетки, как описано в примерах патента), может не только усилить неоднородности течения реакционной смеси, но и спровоцировать нежелательные реакции, ведущие к уменьшению выхода оксида азота.

Таким образом, данный способ конверсии аммиака в значительной степени сохраняет недостатки, характерные для известных способов, и также не обеспечивает достижения высоких выходов оксида азота и существенного снижения потерь платиноидов.

Кроме того, все рассмотренные способы окисления аммиака имеют еще один недостаток: инициирование реакции на платиноидных сетках осуществляется либо пламенным розжиговым устройством за счет тепла продуктов реакции горения газообразного топлива - водорода или азотоводородной смеси, либо с помощью электронагревательных элементов. В обоих случаях практически прямой контакт розжигового устройства (РУ) с платиноидным каталитическим элементом может привести к прогоранию сеток и явлению предкатализа на коллекторе РУ за счет теплового излучения от пакета сеток.

Задачей заявляемого изобретения является снижение потерь платиноидов и увеличение степени конверсии аммиака в оксид азота.

Поставленная задача решается путем пропускания реакционной газовой смеси, содержащей аммиак и кислородсодержащий газ, через двухступенчатую каталитическую систему, в которой первой ступенью по ходу газовой смеси является слой платиноидных сеток, а второй ступенью - слой катализатора регулярной сотовой структуры, причем над первой ступенью по ходу газовой смеси дополнительно располагают слой инертной насадки сотовой структуры высотой 15-30 мм на расстоянии не более 0,4 ее высоты от слоя платиноидных сеток, а на второй ступени каталитической системы используют слой катализатора регулярной сотовой структуры высотой 25-40 мм.

Инертная (кордиеритовая) насадка сотовой структуры изготовлена в соответствие с [Патент 1709705 РФ, 1990] и представляет собой спеченные при 1250-1270oС блоки в форме квадратных призм 100х100 мм с эквивалентным диаметром канала 3,0-3,5 мм, толщиной стенки между каналами 0,5-0,6 мм, открытой поверхностью 72-76%. Катализатор регулярной сотовой структуры содержит оксиды железа и алюминия, приготовлен в форме сот 100х100 мм с эквивалентным диаметром канала 3 мм, толщиной стенки 0,5-0,6 мм и открытой поверхностью 70-73% из катализаторных шихт НК-2У [Авт. свид-во СССР 1220193, 1994] и КН-СХ [Научно-техническая разработка и промышленные испытания экструдированного катализатора КН-СХ второй ступени окисления аммиака в агрегатах производства азотной кислоты под давлением 7,3 ата. [Научный отчет ХПИ. Харьков. -1986] по методике, описанной в [В.И. Ванчурин, В.С. Бесков. Формование катализатора регулярной сотовой структуры из активной шихты для окисления аммиака // Хим. пром. 2000, 3, с.145-148]. Катализатор регулярной сотовой структуры размещают непосредственно под пакетом платиноидных сеток.

При высоте инертной насадки сотовой структуры меньше 15 мм, расстоянии ее до слоя платиноидных сеток больше 0,4 ее высоты и высоты катализатора регулярной структуры меньше 25 мм в рабочих условиях реактора УКЛ-0,716 не удается обеспечить удовлетворительной однородности газораспределения по сечению аппарата, внутри платиноидного и оксидного катализаторов, что приводит к снижению селективности процесса. Увеличение высоты кордиеритовой сотовой насадки больше 30 мм и блочного катализатора больше 40 мм не целесообразно, так как при этом возрастает время пребывания, что снижает выход оксида азота.

В литературе неизвестен способ окисления аммиака в реакторе УКЛ-0,716, в котором реакционная зона была бы секционирована подобным образом: инертная насадка сотовой структуры высотой 15-25 мм + слой платиноидных сеток (I ступень контактирования) + слой 25-40 мм катализатора регулярной сотовой структуры (II ступень контактирования). Т.е. предложенное решение отличается новизной. Предлагаемые расположение и высоты слоев каталитической системы дают неожиданный эффект по увеличению выхода оксида азота и снижению потерь платиноидов, который не может быть достигнут простым перебором или наложением известных вариантов.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1 (прототип). Процесс конверсии аммиака проводят в промышленном реакторе УКЛ-0,716, имеющим диаметр 1500 мм, снабженным двухступенчатой каталитической системой. На первой ступени по ходу газа установлен слой из 9 платиноидных сеток состава, мас.%: Pt - 81, Pd - 15, Rh - 3,5 и Ru - 0,5, и изготовленных из проволоки диаметром 0,092 мм с числом отверстий 1024 на 1 см2. В качестве второй ступени используют 4 пространственно разделенных слоя катализатора регулярной сотовой структуры, приготовленного из шихты НК-2У, высотой каждый 20 мм, с эквивалентным диаметром канала 2 мм, толщиной стенки между каналами 1 мм. Температура процесса 910oС, давление 7 ата, концентрация аммиака в аммиачно-воздушной смеси 10 об..%, скорость аммиачно-воздушной смеси при нормальных условиях 7 м/с. Выход оксида азота в этих условиях составляет 95,1% и безвозвратные потери платиноидов - 0,14 г на 1 т азотной кислоты.

Пример 2. Процесс ведут аналогично примеру 1, с тем отличием, что над слоем платиноидных сеток на расстоянии 6 мм располагают слой инертной насадки сотовой структуры, изготовленной из кордиерита, высотой 15 мм, составленный из блоков с эквивалентным диаметром 3,5 мм, толщиной перегородок между каналами 0,6 мм и открытой поверхностью 72%. При этом вторая ступень в виде слоя катализатора регулярной сотовой структуры, приготовленного из шихты НК-2У имеет высоту 40 мм. Выход оксида азота составляет 95,4% и потери платиноидов 0,135 г на 1 т азотной кислоты.

Пример 3. Процесс ведут аналогично примеру 1, с тем отличием, что непосредственно над слоем платиноидных сеток располагают слой инертной насадки сотовой структуры высотой 30 мм, составленный из блоков с эквивалентным диаметром 3,5 мм, толщиной перегородок между каналами 0,5 мм и открытой поверхностью 76%. При этом вторая ступень, составленная из катализаторных блоков регулярной сотовой структуры с эквивалентным диаметром канала 3 мм, толщиной стенки между каналами 0,5 мм и открытой поверхностью 73% и приготовленных из шихты КН-СХ, имеет высоту 25 мм. Выход оксида азота составляет 95,2% и потери платиноидов 0,130 г на 1 т азотной кислоты.

Пример 4. Процесс ведут аналогично примеру 1, с тем отличием, что над пакетом платиноидных сеток на расстоянии 4 мм располагают слой инертной насадки сотовой структуры высотой 20 мм, составленный из блоков с эквивалентным диаметром 3,0 мм, толщиной перегородок между каналами 0,5 мм и высотой 35 мм. Выход оксида азота составляет 95,3% и потери платиноидов 0,132 г на 1 т азотной кислоты.

В таблице приведены сравнительные данные по примерам 1-4, показывающие, что предлагаемый способ каталитической конверсии аммиака позволяет увеличить выход оксида азота на 0,1-0,3% и снизить потери платиноидов на 0,005-0,01 г на 1 т азотной кислоты.

Похожие патенты RU2184699C1

название год авторы номер документа
СПОСОБ КОНВЕРСИИ АММИАКА 2002
  • Ванчурин В.И.
  • Беспалов А.В.
  • Бесков В.С.
RU2223217C1
КАТАЛИТИЧЕСКИЙ ЭЛЕМЕНТ ДЛЯ КОНВЕРСИИ АММИАКА И СПОСОБ КАТАЛИТИЧЕСКОЙ КОНВЕРСИИ АММИАКА 2001
  • Кирчанов А.А.
  • Макаренко М.Г.
  • Сотников В.В.
RU2186724C1
СПОСОБ КОНВЕРСИИ АММИАКА 1999
  • Носков А.С.
  • Золотарский И.А.
  • Кузьмин В.А.
  • Боброва Л.Н.
  • Бруштейн Е.А.
  • Садыков В.А.
  • Исупова Л.А.
  • Чернышев В.И.
  • Потеха А.И.
  • Хазанов А.А.
RU2145936C1
СПОСОБ КОНВЕРСИИ АММИАКА 1999
  • Золотарский И.А.
  • Носков А.С.
  • Кузьмин В.А.
  • Боброва Л.Н.
  • Бруштейн Е.А.
  • Садыков В.А.
  • Исупова Л.А.
  • Чернышев В.И.
  • Потеха А.И.
  • Хазанов А.А.
RU2145935C1
КАТАЛИТИЧЕСКИЙ ЭЛЕМЕНТ ДЛЯ ГЕТЕРОГЕННЫХ ВЫСОКОТЕМПЕРАТУРНЫХ РЕАКЦИЙ 2018
  • Исупова Любовь Александровна
  • Куликовская Нина Александровна
  • Марчук Андрей Анатольевич
  • Детцель Анна Ильинична
  • Перегоедов Сергей Иванович
  • Скрипко Василий Валерьевич
RU2693454C1
КАТАЛИТИЧЕСКИЙ ЭЛЕМЕНТ ДЛЯ ГЕТЕРОГЕННЫХ ВЫСОКОТЕМПЕРАТУРНЫХ РЕАКЦИЙ 2006
  • Кирчанов Александр Анатольевич
  • Суханов Александр Иванович
  • Хазанов Александр Абрамович
  • Маштаков Владислав Васильевич
  • Макаров Сергей Евгеньевич
  • Писарев Константин Борисович
RU2318596C1
СПОСОБ КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ АММИАКА 2012
  • Бокий Владимир Андреевич
  • Звягин Владимир Николаевич
  • Хальзов Павел Иванович
RU2499766C1
КАТАЛИЗАТОР И СПОСОБ КОНВЕРСИИ АММИАКА 2003
  • Исупова Л.А.
  • Куликовская Н.А.
  • Марчук А.А.
  • Сутормина Е.Ф.
  • Кругляков В.Ю.
  • Золотарский И.А.
  • Садыков В.А.
RU2234977C1
КАТАЛИЗАТОР И СПОСОБ КОНВЕРСИИ АММИАКА 2003
  • Исупова Л.А.
  • Куликовская Н.А.
  • Сутормина Е.Ф.
  • Садыков В.А.
  • Золотарский И.А.
RU2251452C1
КАТАЛИЗАТОР И СПОСОБ КОНВЕРСИИ АММИАКА 2008
  • Исупова Любовь Александровна
  • Сутормина Елена Федоровна
  • Марчук Андрей Анатольевич
  • Куликовская Нина Александровна
RU2368417C1

Иллюстрации к изобретению RU 2 184 699 C1

Реферат патента 2002 года СПОСОБ КОНВЕРСИИ АММИАКА

Изобретение относится к области производства азотной кислоты, а именно к способу конверсии аммиака с использованием двухступенчатой каталитической системы в агрегатах УКЛ-0,716. Способ заключается в пропускании реакционной газовой смеси, содержащей аммиак и кислородсодержащий газ, через двухступенчатую каталитическую систему, в которой первой ступенью по ходу газовой смеси является слой платиноидных сеток, а второй ступенью - слой катализатора регулярной сотовой структуры, причем над первой ступенью по ходу газовой смеси дополнительно располагают слой инертной насадки сотовой структуры высотой 15-30 мм на расстоянии не более 0,4 ее высоты от слоя платиноидных сеток, а на второй ступени каталитической системы используют слой катализатора регулярной сотовой структуры высотой 25-40 мм. Предлагаемое изобретение позволяет увеличить выход оксида азота на 0,1-0,3% и снизить потери платиноидов на 0,005-0,01 г на 1 т азотной кислоты. 1 табл.

Формула изобретения RU 2 184 699 C1

Способ конверсии аммиака, включающий пропускание реакционной газовой смеси, содержащей аммиак и кислородсодержащий газ, через двухступенчатую каталитическую систему, в которой первой ступенью по ходу газовой смеси является слой платиноидных сеток, а второй ступенью - слой катализатора регулярной сотовой структуры, отличающийся тем, что над первой ступенью по ходу газовой смеси дополнительно располагают слой инертной насадки сотовой структуры высотой 15-30 мм на расстоянии не более 0,4 ее высоты от слоя платиноидных сеток, а на второй ступени каталитической системы используют слой катализатора регулярной сотовой структуры высотой 25-40 мм.

Документы, цитированные в отчете о поиске Патент 2002 года RU2184699C1

СПОСОБ КОНВЕРСИИ АММИАКА 1999
  • Золотарский И.А.
  • Носков А.С.
  • Кузьмин В.А.
  • Боброва Л.Н.
  • Бруштейн Е.А.
  • Садыков В.А.
  • Исупова Л.А.
  • Чернышев В.И.
  • Потеха А.И.
  • Хазанов А.А.
RU2145935C1
СПОСОБ КОНВЕРСИИ АММИАКА 1999
  • Носков А.С.
  • Золотарский И.А.
  • Кузьмин В.А.
  • Боброва Л.Н.
  • Бруштейн Е.А.
  • Садыков В.А.
  • Исупова Л.А.
  • Чернышев В.И.
  • Потеха А.И.
  • Хазанов А.А.
RU2145936C1
СПОСОБ КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ АММИАКА 1982
  • Чернышев В.И.
  • Барелко В.В.
  • Зайчко Н.Д.
  • Калиниченко И.Е.
  • Прохоров В.И.
  • Скворцов Е.С.
  • Булошников Л.С.
  • Друзякин Ю.И.
RU1102183C
US 3947554 А, 30.03.1976
US 3660024 А, 02.05.1972.

RU 2 184 699 C1

Авторы

Ванчурин В.И.

Беспалов А.В.

Бесков В.С.

Даты

2002-07-10Публикация

2001-05-24Подача